def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host arbiter = parties.arbiter[0] backend = config.backend work_mode = config.work_mode guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"} host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"} pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=hosts, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data) dataio_0 = DataIO(name="dataio_0") dataio_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, label_name="y", label_type="int", output_format="dense") dataio_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") sample_weight_0 = SampleWeight(name="sample_weight_0") sample_weight_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True, class_weight="balanced") sample_weight_0.get_party_instance(role='host', party_id=hosts).component_param(need_run=False) hetero_lr_0 = HeteroLR(name="hetero_lr_0", optimizer="nesterov_momentum_sgd", tol=0.001, alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, init_param={"init_method": "zeros"}) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1) # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(hetero_lr_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data)) pipeline.compile() job_parameters = JobParameters(backend=backend, work_mode=work_mode) pipeline.fit(job_parameters)
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = { "name": "breast_homo_guest", "namespace": f"experiment_sid{namespace}" } host_train_data = { "name": "breast_homo_host", "namespace": f"experiment_sid{namespace}" } # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=host, arbiter=arbiter) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) # define DataTransform components data_transform_0 = DataTransform( name="data_transform_0", with_match_id=True, with_label=True, output_format="dense") # start component numbering at 0 scale_0 = FeatureScale(name='scale_0') sample_weight_0 = SampleWeight(name="sample_weight_0", class_weight={ "0": 1, "1": 2 }) param = { "penalty": "L2", "optimizer": "sgd", "tol": 1e-05, "alpha": 0.01, "max_iter": 3, "early_stop": "diff", "batch_size": 320, "learning_rate": 0.15, "decay": 1.0, "decay_sqrt": True, "init_param": { "init_method": "zeros" }, "encrypt_param": { "method": "Paillier" }, "cv_param": { "n_splits": 5, "shuffle": True, "random_seed": 33, "need_cv": False } } homo_lr_0 = HomoLR(name='homo_lr_0', **param) evaluation_0 = Evaluation(name='evaluation_0') # add components to pipeline, in order of task execution pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) # set data input sources of intersection components pipeline.add_component(scale_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=scale_0.output.data)) pipeline.add_component(homo_lr_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=homo_lr_0.output.data)) evaluation_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model pipeline.fit() # query component summary print( json.dumps(pipeline.get_component("evaluation_0").get_summary(), indent=4, ensure_ascii=False))
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator( role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance( role='guest', party_id=guest).component_param(with_label=True, label_name="y", label_type="int", output_format="dense") data_transform_0.get_party_instance( role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") sample_weight_0 = SampleWeight(name="sample_weight_0") sample_weight_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True, class_weight="balanced") sample_weight_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) sample_weight_1 = SampleWeight(name="sample_weight_1") hetero_lr_0 = HeteroLR(name="hetero_lr_0", optimizer="nesterov_momentum_sgd", tol=0.001, alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, init_param={"init_method": "zeros"}) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1) # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(sample_weight_1, data=Data(data=intersection_0.output.data), model=Model(model=sample_weight_0.output.model)) pipeline.add_component(hetero_lr_0, data=Data(train_data=sample_weight_1.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data)) pipeline.compile() pipeline.fit() # predict # deploy required components pipeline.deploy_component( [data_transform_0, intersection_0, sample_weight_0, hetero_lr_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component( pipeline, data=Data(predict_input={ pipeline.data_transform_0.input.data: reader_0.output.data })) # run predict model predict_pipeline.predict()
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] guest_train_data = { "name": "motor_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "motor_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance( role='guest', party_id=guest).component_param(with_label=True, label_name="motor_speed", label_type="float", output_format="dense") data_transform_0.get_party_instance( role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") sample_weight_0 = SampleWeight(name="sample_weight_0") sample_weight_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True, sample_weight_name="pm") sample_weight_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) hetero_linr_0 = HeteroSSHELinR(name="hetero_linr_0", penalty="L2", optimizer="rmsprop", tol=0.001, alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, decay=0.0, decay_sqrt=False, init_param={"init_method": "zeros"}, reveal_every_iter=True, reveal_strategy="respectively") evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression", pos_label=1) # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(hetero_linr_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_linr_0.output.data)) pipeline.compile() pipeline.fit() # predict # deploy required components pipeline.deploy_component( [data_transform_0, intersection_0, hetero_linr_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component( pipeline, data=Data(predict_input={ pipeline.data_transform_0.input.data: reader_0.output.data })) # run predict model predict_pipeline.predict()
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] backend = config.backend work_mode = config.work_mode guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator( role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) dataio_0 = DataIO(name="dataio_0") dataio_0.get_party_instance(role='guest', party_id=guest).component_param( with_label=True, label_name="y", label_type="int", output_format="dense") dataio_0.get_party_instance( role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0") binning_param = { "name": 'hetero_feature_binning_0', "method": "quantile", "compress_thres": 10000, "head_size": 10000, "error": 0.001, "bin_num": 10, "bin_indexes": -1, "bin_names": None, "category_indexes": None, "category_names": None, "adjustment_factor": 0.5, "local_only": False, "transform_param": { "transform_cols": -1, "transform_names": None, "transform_type": "bin_num" } } selection_param = { "name": "hetero_feature_selection_0", "select_col_indexes": -1, "select_names": [], "filter_methods": ["iv_value_thres"], "iv_value_param": { "value_threshold": 0.1 } } hetero_feature_binning_0 = HeteroFeatureBinning(**binning_param) hetero_feature_selection_0 = HeteroFeatureSelection(**selection_param) sample_weight_0 = SampleWeight(name="sample_weight_0") sample_weight_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True, class_weight={ "0": 1, "1": 2 }) sample_weight_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) feature_scale_0 = FeatureScale(name="feature_scale_0", method="standard_scale", need_run=True) hetero_lr_0 = HeteroLR(name="hetero_lr_0", optimizer="nesterov_momentum_sgd", tol=0.001, alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, init_param={"init_method": "zeros"}) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1) # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(hetero_feature_binning_0, data=Data(data=sample_weight_0.output.data)) pipeline.add_component( hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data), model=Model(isometric_model=[hetero_feature_binning_0.output.model])) pipeline.add_component(feature_scale_0, data=Data(hetero_feature_selection_0.output.data)) pipeline.add_component(hetero_lr_0, data=Data(train_data=feature_scale_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data)) pipeline.compile() job_parameters = JobParameters(backend=backend, work_mode=work_mode) pipeline.fit(job_parameters)
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] backend = config.backend work_mode = config.work_mode guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator( role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) dataio_0 = DataIO(name="dataio_0") dataio_0.get_party_instance(role='guest', party_id=guest).component_param( with_label=True, output_format="dense", label_type="int", label_name="y") dataio_0.get_party_instance( role='host', party_id=host).component_param(with_label=False) intersection_0 = Intersection(name="intersection_0", intersect_method="rsa", sync_intersect_ids=True, only_output_key=False) sample_weight_0 = SampleWeight(name="sample_weight_0") sample_weight_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True, class_weight={ "0": 1, "1": 2 }) sample_weight_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="nesterov_momentum_sgd", tol=0.0001, alpha=0.0001, max_iter=30, batch_size=-1, early_stop="diff", learning_rate=0.15, init_param={"init_method": "zeros"}) local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression", model_opts={ "penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True, "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr" }) local_baseline_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True) local_baseline_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1) evaluation_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True) evaluation_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) pipeline.add_component(reader_0) pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data)) pipeline.add_component(hetero_lr_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component(local_baseline_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component( evaluation_0, data=Data( data=[hetero_lr_0.output.data, local_baseline_0.output.data])) pipeline.compile() job_parameters = JobParameters(backend=backend, work_mode=work_mode) pipeline.fit(job_parameters)