Exemple #1
0
def do_setup_and_start_training(modules,
                                configs,
                                rank,
                                size,
                                device_list,
                                single=False):
    if not single:
        os.environ['MASTER_ADDR'] = '127.0.0.1'
        os.environ['MASTER_PORT'] = '29509'
        dist.init_process_group('nccl', rank=rank, world_size=size)

    with torch.cuda.device(device_list[rank]):
        print('initializing model on rank %d' % rank)
        if single:
            shared_model = DummySharedWrapper(modules['model'](
                configs['model'])).cuda()
        else:
            shared_model = torch.nn.parallel.DistributedDataParallel(
                modules['model'](configs['model']).cuda(),
                device_ids=[device_list[rank]],
                find_unused_parameters=True)
        model = DistributedWrapper(shared_model)
        memory = modules['memory'](configs['memory'])
        loss_function = modules['loss'](configs['loss'])
        trainer_config = configs['trainer']
        trainer_config.log_path = trainer_config.log_path + '%d.log' % rank
        if rank > 0:
            trainer_config.save_frequency = 0
        trainer = Trainer(model, memory, loss_function, trainer_config)
        print('starting training process on rank %d' % rank)
        stats = trainer.train()

    print('done %d' % rank)
    return stats
Exemple #2
0
def evaluate_current_config(docs, labels, tvt_idx, verbose=True):
    dataset = DocumentGraphDataset(docs, labels, tvt_idx)

    model = create_model(dataset)

    # paras = count_parameters(model)
    # print("\t\"", config["test_name"], "\" : ", paras, sep="")

    # return 0

    trainer = Trainer(dataset, model)

    best_val_loss = float('inf')
    best_model_test = 0
    time_since_best = 0
    for i in range(config["epochs"]):
        train_loss, val_loss = trainer.train_epoch()
        test_acc = trainer.test()

        if verbose:
            print(
                config["indices"] +
                " [epoch %02d] Train loss %.4f, Val loss %.4f, Test Acc %.4f" %
                (i, train_loss, val_loss, test_acc))

        # Early stopping
        time_since_best += 1

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            best_model_test = test_acc
            time_since_best = 0

        if config["terminate_early"] and time_since_best >= config[
                "terminate_patience"]:
            print(
                "\n ## [RESULT!] %s achieved final test score at epoch %i: %.4f ## \n"
                % (config["test_name"], i - time_since_best, best_model_test))
            break

    del dataset
    del model
    del trainer

    gc.collect()
    torch.cuda.empty_cache()

    return best_model_test
def main():
    docs, labels, (t_idx, v_idx, test_idx) = load_data()

    in_training_test = test_idx[:len(test_idx) // 2]
    out_training_test = test_idx[len(test_idx) // 2:]

    # train on (train, val, in_training_test)
    train_docs = docs[t_idx + v_idx + in_training_test]
    train_labels = labels[t_idx + v_idx + in_training_test]
    train_and_intest_indices = (t_idx, v_idx,
                                range(
                                    len(t_idx) + len(v_idx),
                                    len(train_labels)))

    a = 0
    b = 0

    # test on (in_training_test)
    only_in_training_docs = docs[t_idx[:a] + v_idx[:b] + in_training_test]
    only_in_training_labels = labels[t_idx[:a] + v_idx[:b] + in_training_test]
    only_in_training_indices = ([t_idx[:a]], [v_idx[:b]],
                                range(a + b, len(only_in_training_labels)))

    # test on (out_training_test)
    only_out_training_docs = docs[t_idx[:a] + v_idx[:b] + out_training_test]
    only_out_training_labels = labels[t_idx[:a] + v_idx[:b] +
                                      out_training_test]
    only_out_training_indices = ([t_idx[:a]], [v_idx[:b]],
                                 range(a + b, len(only_out_training_labels)))

    # test on (train, val, out_training_test)
    train_and_outtest_docs = docs[t_idx + v_idx + out_training_test]
    train_and_outtest_labels = labels[t_idx + v_idx + out_training_test]
    train_and_outtest_indices = (t_idx, v_idx,
                                 range(
                                     len(t_idx) + len(v_idx),
                                     len(train_and_outtest_labels)))

    train_and_intest_dataset = DocumentGraphDataset(train_docs, train_labels,
                                                    train_and_intest_indices)
    only_in_training_dataset = DocumentGraphDataset(
        only_in_training_docs,
        only_in_training_labels,
        only_in_training_indices,
        force_vocab=train_and_intest_dataset.vocab)
    only_out_training_dataset = DocumentGraphDataset(
        only_out_training_docs,
        only_out_training_labels,
        only_out_training_indices,
        force_vocab=train_and_intest_dataset.vocab)
    train_and_outtest_dataset = DocumentGraphDataset(
        train_and_outtest_docs,
        train_and_outtest_labels,
        train_and_outtest_indices,
        force_vocab=train_and_intest_dataset.vocab)

    model = None

    best_val_loss = float('inf')
    time_since_best = 0

    for i in range(config["epochs"]):
        if model is None:
            model = create_model(train_and_intest_dataset)
            trainer = Trainer(train_and_intest_dataset, model)
        else:
            trainer.update_data(train_and_intest_dataset)

        train_loss, val_loss = trainer.train_epoch()
        test_acc_train_and_intest = trainer.test()

        trainer.update_data(only_in_training_dataset)
        test_acc_only_in_training = trainer.test()

        trainer.update_data(only_out_training_dataset)
        test_acc_only_out_training = trainer.test()

        trainer.update_data(train_and_outtest_dataset)
        test_acc_train_and_outtest = trainer.test()

        print("[epoch %02d] Train loss %.4f, Val loss %.4f" %
              (i, train_loss, val_loss))
        print(" acc on in training test, with training docs in graph: %.4f" %
              (test_acc_train_and_intest))
        print(
            " acc on in training test, WITHOUT training docs in graph: %.4f" %
            (test_acc_only_in_training))
        print(
            " acc on out of training test, WITHOUT training docs in graph: %.4f"
            % (test_acc_only_out_training))
        print(
            " acc on out of training test, with training docs in graph: %.4f" %
            (test_acc_train_and_outtest))

        # Early stopping
        time_since_best += 1

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            time_since_best = 0

        if config["terminate_early"] and time_since_best >= config[
                "terminate_patience"]:
            print("\n[RESULT!] Final test score: see above")
            break
Exemple #4
0
def main():
    update_config(quick_config)
    docs, labels, tvt_idx = load_data()

    dataset = DocumentGraphDataset(docs, labels, tvt_idx)

    model = create_model(dataset)

    trainer = Trainer(dataset, model)

    # trainer.save_initial_reps()

    best_val_loss = float('inf')
    time_since_best = 0
    best_val_loss_acc = 0
    high_score = 0
    for i in range(config["epochs"]):

        # split for special debug printing
        if config["sampled_training"] and config["unsupervised_loss"]:
            # trainer.save_sage_reps()
            train_loss, val_loss, unsup_train_loss_pos, unsup_train_loss_neg, unsup_val_loss_pos, unsup_val_loss_neg, unsup_test_pos, unsup_test_neg = trainer.train_epoch(
            )

            test_acc, test_loss, unsup_test_loss_pos, unsup_test_loss_neg = trainer.test(
            )

            total_train = train_loss + unsup_train_loss_pos + unsup_train_loss_neg
            total_val = val_loss + unsup_val_loss_pos + unsup_val_loss_neg
            total_test = test_loss + unsup_test_loss_pos + unsup_test_loss_neg
            print("[epoch %02d] Test Acc %.4f (Trained %s-supervised)" %
                  (i, test_acc, config['sup_mode']))
            print("\t Train Loss: %.4f (%.4f / %.4f / %.4f) (%.0f%% sup)" %
                  (total_train, train_loss, unsup_train_loss_pos,
                   unsup_train_loss_neg, train_loss / total_train * 100))
            print("\t Val Loss: %.4f (%.4f / %.4f / %.4f) (%.0f%% sup)" %
                  (total_val, val_loss, unsup_val_loss_pos, unsup_val_loss_neg,
                   val_loss / total_val * 100))
            print("\t Training on test Losses: %.4f, %.4f, %.1f%% of total" %
                  (unsup_test_pos, unsup_test_neg,
                   (unsup_test_pos + unsup_test_neg) /
                   (unsup_test_pos + unsup_test_neg + total_train) * 100))
            # print("\t Test Loss: %.4f (%.4f / %.4f / %.4f) (%.0f%% sup)" % (total_test, test_loss, unsup_test_loss_pos, unsup_test_loss_neg, test_loss / total_test))

            val_loss = total_val
        else:
            train_loss, val_loss = trainer.train_epoch()
            test_acc = trainer.test()
            high_score = max(test_acc, high_score)
            print(
                "[epoch %02d] Train loss %.4f, Val loss %.4f, Test Acc %.4f, Highscore: %.4f"
                % (i, train_loss, val_loss, test_acc, high_score))

        # Early stopping
        time_since_best += 1

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            time_since_best = 0
            best_val_loss_acc = test_acc

        if config["terminate_early"] and time_since_best >= config[
                "terminate_patience"]:

            if config["sampled_training"] and config["unsupervised_loss"]:
                test_acc, test_loss, unsup_test_loss_pos, unsup_test_loss_neg = trainer.test(
                )
                print("\n[RESULT!] Final test score: ", best_val_loss_acc)
            else:
                test_acc = trainer.test()
            break

    print("\n[RESULT!] Final test score: ", best_val_loss_acc)
    actor_config.data_files = [[
        'NovelObjects__train.json', 'NovelObjects__test.json'
    ], ['NovelSpaces__train.json', 'NovelSpaces__test.json']][dataset]
    actor_config.data_files = [
        os.path.join(dataset_folder, fn) for fn in actor_config.data_files
    ]

    loss_function = MaskAndMassLoss(MaskAndMassLossConfig())
    model = ClusteringModel(ClusteringModelConfig()).cuda(
        global_config.model_gpu)

    trainer_config = TrainerConfig()
    trainer_config.log_path = os.path.join(output_folder, 'training_log.log')

    trainer = Trainer(model, ReplayPILDataset(MemoryConfigPIL()),
                      loss_function, trainer_config)

    print('Running instance segmentation only pre-training')

    actor_config.instance_only = True
    loss_function.config.instance_only = True
    trainer_config.checkpoint_path = os.path.join(
        output_folder, args.checkpoint_prefix + 'inst_only_')

    model.toggle_mass_head(False)

    trainer.train()

    print('Training with force prediction')

    actor_config.instance_only = False
Exemple #6
0
def main():
    # load data
    docs, labels, tvt_idx = load_data()
    train_idx, val_idx, test_idx = tvt_idx

    model = None

    results = {
        "epochs": [],
        "average_train_loss": [],
        "average_val_loss": [],
        "average_test_acc": [],
        "split_amount": [],
        "acc": []
    }

    # create model with vocab for entire dataset
    dataset = DocumentGraphDataset(docs, labels, tvt_idx)
    model = create_model(dataset)
    trainer = Trainer(dataset, model)

    for i in range(config["epochs"]):
        number_of_splits = random.randint(1, 40)

        # split in x random divisions
        split_train_amount = len(train_idx) // number_of_splits
        split_val_amount = len(val_idx) // number_of_splits
        split_test_amount = len(test_idx) // number_of_splits

        print("Splitting %i segments, %i %i %i" %
              (number_of_splits, split_train_amount, split_val_amount,
               split_test_amount))

        # train on different random splits
        random.shuffle(train_idx)
        random.shuffle(val_idx)
        random.shuffle(test_idx)

        train_losses = []
        val_losses = []
        test_accs = []

        for split_i in range(number_of_splits):
            split_train_idx = train_idx[split_i *
                                        split_train_amount:(split_i + 1) *
                                        split_train_amount]
            split_val_idx = val_idx[split_i * split_val_amount:(split_i + 1) *
                                    split_val_amount]
            split_test_idx = test_idx[split_i *
                                      split_test_amount:(split_i + 1) *
                                      split_test_amount]

            # this ain't right
            dataset = DocumentGraphDataset(
                docs, labels, (split_train_idx, split_val_idx, split_test_idx))

            if model is None:
                model = create_model(dataset)
                trainer = Trainer(dataset, model)
            else:
                trainer.update_data(dataset)

            train_loss, val_loss = trainer.train_epoch()
            test_acc = trainer.test()

            print("split %02d: (%.4f, %.4f, ! %.4f !), " %
                  (split_i, train_loss, val_loss, test_acc),
                  end="")
            train_losses.append(train_loss)
            val_losses.append(val_loss)
            test_accs.append(test_acc)

        # test on entire graph
        dataset = DocumentGraphDataset(docs, labels, tvt_idx)
        trainer.update_data(dataset)
        test_acc = trainer.test()

        print("\n\n[epoch %02d] Test Acc on entire dataset %.4f\n\n" %
              (i, test_acc))

        # summary
        results["epochs"].append(i)
        results["average_train_loss"].append(
            float(sum(train_losses) / len(train_losses)))
        results["average_val_loss"].append(
            float(sum(val_losses) / len(val_losses)))
        results["average_test_acc"].append(
            float(sum(test_accs) / len(test_accs)))
        results["split_amount"].append(number_of_splits)
        results["acc"].append(test_acc)

        df = pd.DataFrame(results)
        df.to_csv('./results/' + config['experiment_name'] + '.csv')