def make(self, key): print(f'Populating trials for {key}') # Get olfactory h5 path and filename olfactory_path = (OdorSession & key).fetch1('odor_path') local_path = lab.Paths().get_local_path(olfactory_path) filename_base = (OdorRecording & key).fetch1('filename') digital_filename = os.path.join(local_path, filename_base + '_D_%d.h5') # Load olfactory data digital_data = h5.read_digital_olfaction_file(digital_filename) # Check valve data ends with all valves closed if digital_data['valves'][-1] != 0: msg = f'Error: Final valve state is open! Ending time cannot be calculated for {key}.' raise PipelineException(msg) valve_open_idx = np.where(digital_data['valves'] > 0)[0] trial_valve_states = digital_data['valves'][valve_open_idx] trial_start_times = h5.ts2sec(digital_data['ts'][valve_open_idx]) # Shift start indices by one to get end indices trial_end_times = h5.ts2sec(digital_data['ts'][valve_open_idx + 1]) # All keys are appended to a list and inserted at the end to prevent errors from halting mid-calculation all_trial_keys = [] # Find all trials and insert a key for each channel open during each trial for trial_num, (state, start, stop) in enumerate( zip(trial_valve_states, trial_start_times, trial_end_times)): valve_array = OdorTrials.convert_valves(state) for valve_num in np.where( valve_array )[0]: # Valve array is already a boolean, look for all true values # We start counting valves at 1, not 0 like python indices valve_num = valve_num + 1 trial_key = [ key['animal_id'], key['odor_session'], key['recording_idx'], trial_num, valve_num, start, stop ] all_trial_keys.append(trial_key) self.insert(all_trial_keys) print( f'{valve_open_idx.shape[0]} odor trials found and inserted for {key}.\n' )
def make(self, key): print(f'Populating Sync for {key}') # Get olfactory h5 path and filename olfactory_path = (OdorSession & key).fetch1('odor_path') local_path = lab.Paths().get_local_path(olfactory_path) filename_base = (OdorRecording & key).fetch1('filename') analog_filename = os.path.join(local_path, filename_base + '_%d.h5') # Load olfactory data analog_data = h5.read_analog_olfaction_file(analog_filename) scan_times = h5.ts2sec(analog_data['ts'], is_packeted=True) binarized_signal = analog_data['scanImage'] > 2.7 # TTL voltage low/high threshold rising_edges = np.where(np.diff(binarized_signal.astype(int)) > 0)[0] frame_times = scan_times[rising_edges] # Correct NaN gaps in timestamps (mistimed or dropped packets during recording) if np.any(np.isnan(frame_times)): # Raise exception if first or last frame pulse was recorded in mistimed packet if np.isnan(frame_times[0]) or np.isnan(frame_times[-1]): msg = ('First or last frame happened during misstamped packets. Pulses ' 'could have been missed: start/end of scanning is unknown.') raise PipelineException(msg) # Fill each gap of nan values with correct number of timepoints frame_period = np.nanmedian(np.diff(frame_times)) # approx nan_limits = np.where(np.diff(np.isnan(frame_times)))[0] nan_limits[1::2] += 1 # limits are indices of the last valid point before the nan gap and first after it correct_fts = [] for i, (start, stop) in enumerate(zip(nan_limits[::2], nan_limits[1::2])): correct_fts.extend(frame_times[0 if i == 0 else nan_limits[2 * i - 1]: start + 1]) num_missing_points = int(round((frame_times[stop] - frame_times[start]) / frame_period - 1)) correct_fts.extend(np.linspace(frame_times[start], frame_times[stop], num_missing_points + 2)[1:-1]) correct_fts.extend(frame_times[nan_limits[-1]:]) frame_times = np.array(correct_fts) # Check that frame times occur at the same period frame_intervals = np.diff(frame_times) frame_period = np.median(frame_intervals) if np.any(abs(frame_intervals - frame_period) > 0.15 * frame_period): raise PipelineException('Frame time period is irregular') self.insert1({**key, 'signal_start_time': frame_times[0], 'signal_duration': frame_times[-1] - frame_times[0], 'frame_times': frame_times}) print(f'ScanImage sync added for animal {key["animal_id"]}, ' f'olfactory session {key["odor_session"]}, ' f'recording {key["recording_idx"]}\n')
def make(self, key): print(f'Populating Respiration for {key}') # Get olfactory h5 path and filename olfactory_path = (OdorSession & key).fetch1('odor_path') local_path = lab.Paths().get_local_path(olfactory_path) filename_base = (OdorRecording & key).fetch1('filename') analog_filename = os.path.join(local_path, filename_base + '_%d.h5') # Load olfactory data analog_data = h5.read_analog_olfaction_file(analog_filename) breath_times = h5.ts2sec(analog_data['ts'], is_packeted=True) breath_trace = analog_data['breath'] # Correct NaN gaps in timestamps (mistimed or dropped packets during recording) if np.any(np.isnan(breath_times)): # Raise exception if first or last frame pulse was recorded in mistimed packet if np.isnan(breath_times[0]) or np.isnan(breath_times[-1]): msg = ( 'First or last breath happened during misstamped packets. Pulses ' 'could have been missed: start/end of collection is unknown.' ) raise PipelineException(msg) # Linear interpolate between nans nans_idx = np.where(np.isnan(breath_times))[0] non_nans_idx = np.where(~np.isnan(breath_times))[0] breath_times[nans_idx] = np.interp(nans_idx, non_nans_idx, breath_times[non_nans_idx]) print( f'Largest NaN gap found: {np.max(np.abs(np.diff(breath_times[non_nans_idx])))} seconds' ) # Check that frame times occur at the same period breath_intervals = np.diff(breath_times) breath_period = np.median(breath_intervals) if np.any( abs(breath_intervals - breath_period) > 0.15 * breath_period): raise PipelineException('Breath time period is irregular') # Error check tracing and timing match if breath_trace.shape[0] != breath_times.shape[0]: raise PipelineException('Breath timing and trace mismatch!') breath_key = {**key, 'trace': breath_trace, 'times': breath_times} self.insert1(breath_key) print(f'Respiration data for {key} successfully inserted.\n')
def make(self, key): """ Read ephys data and insert into table """ import h5py # Read the scan print('Reading file...') vreso_path, filename_base = (PatchSession * (Recording() & key)).fetch1( 'recording_path', 'file_name') local_path = lab.Paths().get_local_path(vreso_path) filename = os.path.join(local_path, filename_base + '_%d.h5') with h5py.File(filename, 'r', driver='family', memb_size=0) as f: # Load timing info ANALOG_PACKET_LEN = f.attrs['waveform Frame Size'][0] # Get counter timestamps and convert to seconds patch_times = h5.ts2sec(f['waveform'][10, :], is_packeted=True) # Detect rising edges in scanimage clock signal (start of each frame) binarized_signal = f['waveform'][ 9, :] > 2.7 # TTL voltage low/high threshold rising_edges = np.where( np.diff(binarized_signal.astype(int)) > 0)[0] frame_times = patch_times[rising_edges] # Correct NaN gaps in timestamps (mistimed or dropped packets during recording) if np.any(np.isnan(frame_times)): # Raise exception if first or last frame pulse was recorded in mistimed packet if np.isnan(frame_times[0]) or np.isnan(frame_times[-1]): msg = ( 'First or last frame happened during misstamped packets. Pulses ' 'could have been missed: start/end of scanning is unknown.' ) raise PipelineException(msg) # Fill each gap of nan values with correct number of timepoints frame_period = np.nanmedian(np.diff(frame_times)) # approx nan_limits = np.where(np.diff(np.isnan(frame_times)))[0] nan_limits[ 1:: 2] += 1 # limits are indices of the last valid point before the nan gap and first after it correct_fts = [] for i, (start, stop) in enumerate( zip(nan_limits[::2], nan_limits[1::2])): correct_fts.extend( frame_times[0 if i == 0 else nan_limits[2 * i - 1]:start + 1]) num_missing_points = int( round((frame_times[stop] - frame_times[start]) / frame_period - 1)) correct_fts.extend( np.linspace(frame_times[start], frame_times[stop], num_missing_points + 2)[1:-1]) correct_fts.extend(frame_times[nan_limits[-1]:]) frame_times = np.array(correct_fts) # Record the NaN fix num_gaps = int(len(nan_limits) / 2) nan_length = sum(nan_limits[1::2] - nan_limits[::2]) * frame_period # secs ####### WARNING: FRAME INTERVALS NOT ERROR CHECKED - TEMP CODE ####### # Check that frame times occur at the same period frame_intervals = np.diff(frame_times) frame_period = np.median(frame_intervals) #if np.any(abs(frame_intervals - frame_period) > 0.15 * frame_period): # raise PipelineException('Frame time period is irregular') # Drop last frame time if scan crashed or was stopped before completion valid_times = ~np.isnan( patch_times[rising_edges[0]:rising_edges[-1]] ) # restricted to scan period binarized_valid = binarized_signal[ rising_edges[0]:rising_edges[-1]][valid_times] frame_duration = np.mean(binarized_valid) * frame_period falling_edges = np.where( np.diff(binarized_signal.astype(int)) < 0)[0] last_frame_duration = patch_times[ falling_edges[-1]] - frame_times[-1] if (np.isnan(last_frame_duration) or last_frame_duration < 0 or abs(last_frame_duration - frame_duration) > 0.15 * frame_duration): frame_times = frame_times[:-1] ####### WARNING: NO CORRECTION APPLIED - TEMP CODE ####### voltage = np.array(f['waveform'][1, :], dtype='float32') current = np.array(f['waveform'][0, :], dtype='float32') command = np.array(f['waveform'][5, :], dtype='float32') ####### WARNING: DUMMY VARIABLES - TEMP CODE ####### vgain = 0 igain = 0 command_gain = 0 self.insert1({ **key, 'voltage': voltage, 'current': current, 'command': command, 'patch_times': patch_times, 'frame_times': frame_times, 'vgain': vgain, 'igain': igain, 'command_gain': command_gain })