Exemple #1
0
    def sum(self, sum_params: aggregate_params.SumParams) -> RDD:
        """Computes a DP sum.

        Args:
            sum_params: parameters for calculation
        """

        backend = pipeline_dp.SparkRDDBackend(self._rdd.context)
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=sum_params.noise_kind,
            metrics=[pipeline_dp.Metrics.SUM],
            max_partitions_contributed=sum_params.max_partitions_contributed,
            max_contributions_per_partition=sum_params.
            max_contributions_per_partition,
            min_value=sum_params.min_value,
            max_value=sum_params.max_value,
            public_partitions=sum_params.public_partitions,
            budget_weight=sum_params.budget_weight)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: sum_params.partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0],
            value_extractor=lambda x: sum_params.value_extractor(x[1]))

        dp_result = dp_engine.aggregate(self._rdd, params, data_extractors)
        # dp_result : (partition_key, [dp_sum])

        # aggregate() returns a list of metrics for each partition key.
        # Here is only one metric - sum. Remove list.
        dp_result = backend.map_values(dp_result, lambda v: v[0], "Unnest list")
        # dp_result : (partition_key, dp_sum)

        return dp_result
Exemple #2
0
 def test_aggregate_report(self):
     params1 = pipeline_dp.AggregateParams(
         max_partitions_contributed=3,
         max_contributions_per_partition=2,
         low=1,
         high=5,
         metrics=[
             pipeline_dp.Metrics.PRIVACY_ID_COUNT,
             pipeline_dp.Metrics.COUNT, pipeline_dp.Metrics.MEAN
         ],
     )
     params2 = pipeline_dp.AggregateParams(
         max_partitions_contributed=1,
         max_contributions_per_partition=3,
         low=2,
         high=10,
         metrics=[
             pipeline_dp.Metrics.VAR, pipeline_dp.Metrics.SUM,
             pipeline_dp.Metrics.MEAN
         ],
         public_partitions=list(range(1, 40)),
     )
     engine = pipeline_dp.DPEngine(None, None)
     engine.aggregate(None, params1, None)
     engine.aggregate(None, params2, None)
     self.assertEqual(len(engine._report_generators), 2)  # pylint: disable=protected-access
def get_private_movies(movie_views, backend):
    """Obtains the list of movies in a differentially private manner.

    This does not calculate any metrics; it merely returns the list of
    movies, making sure the result is differentially private.
    """

    # Set the total privacy budget.
    budget_accountant = pipeline_dp.NaiveBudgetAccountant(total_epsilon=0.1,
                                                          total_delta=1e-6)

    # Create a DPEngine instance.
    dp_engine = pipeline_dp.DPEngine(budget_accountant, backend)

    # Specify how to extract privacy_id, partition_key and value from an
    # element of movie view collection.
    data_extractors = pipeline_dp.DataExtractors(
        partition_extractor=lambda mv: mv.movie_id,
        privacy_id_extractor=lambda mv: mv.user_id)

    # Run aggregation.
    dp_result = dp_engine.select_partitions(
        movie_views,
        pipeline_dp.SelectPartitionsParams(max_partitions_contributed=2),
        data_extractors=data_extractors)

    budget_accountant.compute_budgets()
    return dp_result
Exemple #4
0
def calc_dp_rating_metrics(movie_views, backend, public_partitions):
    """Computes DP metrics."""

    # Set the total privacy budget.
    budget_accountant = pipeline_dp.NaiveBudgetAccountant(total_epsilon=1,
                                                          total_delta=1e-6)

    # Create a DPEngine instance.
    dp_engine = pipeline_dp.DPEngine(budget_accountant, backend)

    # Specify which DP aggregated metrics to compute.
    params = pipeline_dp.AggregateParams(
        noise_kind=pipeline_dp.NoiseKind.LAPLACE,
        metrics=None,
        max_partitions_contributed=2,
        max_contributions_per_partition=1,
        min_value=1,
        max_value=5,
        public_partitions=public_partitions,
        custom_combiners=[CountCombiner()])

    # Specify how to extract privacy_id, partition_key and value from an
    # element of movie view collection.
    data_extractors = pipeline_dp.DataExtractors(
        partition_extractor=lambda mv: mv.movie_id,
        privacy_id_extractor=lambda mv: mv.user_id,
        value_extractor=lambda mv: mv.rating)

    # Run aggregation.
    dp_result = dp_engine.aggregate(movie_views, params, data_extractors)

    budget_accountant.compute_budgets()

    return dp_result
Exemple #5
0
    def expand(self, pcol: pvalue.PCollection) -> pvalue.PCollection:
        backend = pipeline_dp.BeamBackend()
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=self._count_params.noise_kind,
            metrics=[pipeline_dp.Metrics.COUNT],
            max_partitions_contributed=self._count_params.
            max_partitions_contributed,
            max_contributions_per_partition=self._count_params.
            max_contributions_per_partition,
            public_partitions=self._count_params.public_partitions)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: self._count_params.
            partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0],
            # Count calculates the number of elements per partition key and
            # doesn't use value extractor.
            value_extractor=lambda x: None)

        dp_result = dp_engine.aggregate(pcol, params, data_extractors)
        # dp_result : (partition_key, [dp_count])

        # aggregate() returns a namedtuple of metrics for each partition key.
        # Here is only one metric - count. Extract it from the list.
        dp_result = backend.map_values(dp_result, lambda v: v.count,
                                       "Extract sum")
        # dp_result : (partition_key, dp_count)

        return dp_result
Exemple #6
0
    def run_e2e_private_partition_selection_large_budget(col, backend):
        # Arrange
        aggregator_params = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.LAPLACE,
            metrics=[agg.Metrics.COUNT, agg.Metrics.SUM],
            min_value=1,
            max_value=10,
            max_partitions_contributed=1,
            max_contributions_per_partition=1)

        # Set a large budget for having the small noise and keeping all
        # partition keys.
        budget_accountant = NaiveBudgetAccountant(total_epsilon=100000,
                                                  total_delta=1)

        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: x,
            partition_extractor=lambda x: f"pk{x//2}",
            value_extractor=lambda x: x)

        engine = pipeline_dp.DPEngine(budget_accountant, backend)

        col = engine.aggregate(col=col,
                               params=aggregator_params,
                               data_extractors=data_extractor)
        budget_accountant.compute_budgets()

        return col
Exemple #7
0
    def expand(self, pcol: pvalue.PCollection) -> pvalue.PCollection:
        backend = pipeline_dp.BeamBackend()
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=self._privacy_id_count_params.noise_kind,
            metrics=[pipeline_dp.Metrics.PRIVACY_ID_COUNT],
            max_partitions_contributed=self._privacy_id_count_params.
            max_partitions_contributed,
            max_contributions_per_partition=1,
            public_partitions=self._privacy_id_count_params.public_partitions)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: self._privacy_id_count_params.
            partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0],
            # PrivacyIdCount ignores values.
            value_extractor=lambda x: None)

        dp_result = dp_engine.aggregate(pcol, params, data_extractors)
        # dp_result : (partition_key, [dp_privacy_id_count])

        # aggregate() returns a namedtuple of metrics for each partition key.
        # Here is only one metric - privacy_id_count. Extract it from the list.
        dp_result = backend.map_values(dp_result, lambda v: v.privacy_id_count,
                                       "Extract privacy_id_count")
        # dp_result : (partition_key, dp_privacy_id_count)

        return dp_result
Exemple #8
0
    def expand(self, pcol: pvalue.PCollection) -> pvalue.PCollection:
        backend = pipeline_dp.BeamBackend()
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=self._mean_params.noise_kind,
            metrics=[pipeline_dp.Metrics.MEAN],
            max_partitions_contributed=self._mean_params.
            max_partitions_contributed,
            max_contributions_per_partition=self._mean_params.
            max_contributions_per_partition,
            min_value=self._mean_params.min_value,
            max_value=self._mean_params.max_value,
            public_partitions=self._mean_params.public_partitions)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: self._mean_params.partition_extractor(
                x[1]),
            privacy_id_extractor=lambda x: x[0],
            value_extractor=lambda x: self._mean_params.value_extractor(x[1]))

        dp_result = dp_engine.aggregate(pcol, params, data_extractors)
        # dp_result : (partition_key, [dp_sum])

        # aggregate() returns a namedtuple of metrics for each partition key.
        # Here is only one metric - mean. Extract it from the list.
        dp_result = backend.map_values(dp_result, lambda v: v.mean,
                                       "Extract mean")
        # dp_result : (partition_key, dp_sum)

        return dp_result
Exemple #9
0
def calc_dp_rating_metrics(movie_views, ops, public_partitions):
    """Computes dp metrics."""

    # Set the total privacy budget.
    budget_accountant = pipeline_dp.BudgetAccountant(epsilon=1, delta=1e-6)

    # Create a DPEngine instance.
    dp_engine = pipeline_dp.DPEngine(budget_accountant, ops)

    # Specify which DP aggregated metrics to compute.
    params = pipeline_dp.AggregateParams(metrics=[
        pipeline_dp.Metrics.COUNT,
    ],
                                         max_partitions_contributed=2,
                                         max_contributions_per_partition=1,
                                         low=1,
                                         high=5,
                                         public_partitions=public_partitions)

    # Specify how to extract is privacy_id, partition_key and value from an element of movie view collection.
    data_extractors = pipeline_dp.DataExtractors(
        partition_extractor=lambda mv: mv.movie_id,
        privacy_id_extractor=lambda mv: mv.user_id,
        value_extractor=lambda mv: mv.rating)

    # Run aggregation.
    dp_result = dp_engine.aggregate(movie_views, params, data_extractors)

    budget_accountant.compute_budgets()
    return dp_result
Exemple #10
0
 def test_check_invalid_bounding_params(self, error_msg, min_value,
                                        max_value,
                                        max_partitions_contributed,
                                        max_contributions_per_partition,
                                        metrics):
     with self.assertRaises(Exception, msg=error_msg):
         budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                   total_delta=1e-10)
         engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                       backend=pipeline_dp.LocalBackend())
         engine.aggregate(
             [0],
             pipeline_dp.AggregateParams(
                 noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
                 max_partitions_contributed=max_partitions_contributed,
                 max_contributions_per_partition=
                 max_contributions_per_partition,
                 min_value=min_value,
                 max_value=max_value,
                 metrics=metrics),
             pipeline_dp.DataExtractors(
                 privacy_id_extractor=lambda x: x,
                 partition_extractor=lambda x: x,
                 value_extractor=lambda x: x,
             ))
Exemple #11
0
    def test_aggregate_computation_graph_verification(
            self, mock_bound_contributions):
        # Arrange
        aggregator_params = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
            metrics=[agg.Metrics.COUNT],
            max_partitions_contributed=5,
            max_contributions_per_partition=3)
        budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                  total_delta=1e-10)

        col = [[1], [2], [3], [3]]
        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: f"pid{x}",
            partition_extractor=lambda x: f"pk{x}",
            value_extractor=lambda x: x)

        mock_bound_contributions.return_value = [
            [("pid1", "pk1"), (1, [1])],
            [("pid2", "pk2"), (1, [1])],
            [("pid3", "pk3"), (1, [2])],
        ]

        engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                      backend=pipeline_dp.LocalBackend())
        col = engine.aggregate(col=col,
                               params=aggregator_params,
                               data_extractors=data_extractor)

        # Assert
        mock_bound_contributions.assert_called_with(
            unittest.mock.ANY, aggregator_params.max_partitions_contributed,
            aggregator_params.max_contributions_per_partition,
            unittest.mock.ANY)
Exemple #12
0
    def test_aggregate_report(self):
        col = [[1], [2], [3], [3]]
        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: f"pid{x}",
            partition_extractor=lambda x: f"pk{x}",
            value_extractor=lambda x: x)
        params1 = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
            max_partitions_contributed=3,
            max_contributions_per_partition=2,
            min_value=1,
            max_value=5,
            metrics=[
                pipeline_dp.Metrics.PRIVACY_ID_COUNT,
                pipeline_dp.Metrics.COUNT, pipeline_dp.Metrics.MEAN
            ],
        )
        params2 = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
            max_partitions_contributed=1,
            max_contributions_per_partition=3,
            min_value=2,
            max_value=10,
            metrics=[pipeline_dp.Metrics.SUM, pipeline_dp.Metrics.MEAN],
            public_partitions=list(range(1, 40)),
        )

        select_partitions_params = SelectPartitionsParams(
            max_partitions_contributed=2)

        budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                  total_delta=1e-10)
        engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                      backend=pipeline_dp.LocalBackend())
        engine.aggregate(col, params1, data_extractor)
        engine.aggregate(col, params2, data_extractor)
        engine.select_partitions(col, select_partitions_params, data_extractor)
        self.assertEqual(3, len(engine._report_generators))  # pylint: disable=protected-access
        budget_accountant.compute_budgets()
        self.assertEqual(
            engine._report_generators[0].report(),
            "Differentially private: Computing <Metrics: ['privacy_id_count', 'count', 'mean']>"
            "\n1. Per-partition contribution bounding: randomly selected not more than 2 contributions"
            "\n2. Cross-partition contribution bounding: randomly selected not more than 3 partitions per user"
            "\n3. Private Partition selection: using Truncated Geometric method with (eps= 0.1111111111111111, delta = 1.1111111111111111e-11)"
        )
        self.assertEqual(
            engine._report_generators[1].report(),
            "Differentially private: Computing <Metrics: ['sum', 'mean']>"
            "\n1. Public partition selection: dropped non public partitions"
            "\n2. Per-partition contribution bounding: randomly selected not more than 3 contributions"
            "\n3. Cross-partition contribution bounding: randomly selected not more than 1 partitions per user"
            "\n4. Adding empty partitions to public partitions that are missing in data"
        )
        self.assertEqual(
            engine._report_generators[2].report(),
            "Differentially private: Computing <Private Partitions>"
            "\n1. Private Partition selection: using Truncated Geometric method with (eps= 0.3333333333333333, delta = 3.3333333333333335e-11)"
        )
Exemple #13
0
def main(unused_argv):
    # Here, we use a local backend for computations. This does not depend on
    # any pipeline framework and it is implemented in pure Python in
    # PipelineDP. It keeps all data in memory and is not optimized for large data.
    # For datasets smaller than ~tens of megabytes, local execution without any
    # framework is faster than local mode with Beam or Spark.
    backend = pipeline_dp.LocalBackend()

    # Define the privacy budget available for our computation.
    budget_accountant = pipeline_dp.NaiveBudgetAccountant(total_epsilon=1,
                                                          total_delta=1e-6)

    # Load and parse input data
    movie_views = parse_file(FLAGS.input_file)

    # Create a DPEngine instance.
    dp_engine = pipeline_dp.DPEngine(budget_accountant, backend)

    params = pipeline_dp.AggregateParams(
        metrics=[
            # we can compute multiple metrics at once.
            pipeline_dp.Metrics.COUNT,
            pipeline_dp.Metrics.SUM,
            pipeline_dp.Metrics.PRIVACY_ID_COUNT
        ],
        # Limits to how much one user can contribute:
        # .. at most two movies rated per user
        max_partitions_contributed=2,
        # .. at most one rating for each movie
        max_contributions_per_partition=1,
        # .. with minimal rating of "1"
        min_value=1,
        # .. and maximum rating of "5"
        max_value=5)

    # Specify how to extract privacy_id, partition_key and value from an
    # element of movie_views.
    data_extractors = pipeline_dp.DataExtractors(
        partition_extractor=lambda mv: mv.movie_id,
        privacy_id_extractor=lambda mv: mv.user_id,
        value_extractor=lambda mv: mv.rating)

    # Create a computational graph for the aggregation.
    # All computations are lazy. dp_result is iterable, but iterating it would
    # fail until budget is computed (below).
    # It’s possible to call DPEngine.aggregate multiple times with different
    # metrics to compute.
    dp_result = dp_engine.aggregate(movie_views, params, data_extractors)

    budget_accountant.compute_budgets()

    # Here's where the lazy iterator initiates computations and gets transformed
    # into actual results
    dp_result = list(dp_result)

    # Save the results
    write_to_file(dp_result, FLAGS.output_file)

    return 0
Exemple #14
0
    def test_check_aggregate_params(self):
        default_extractors = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: x,
            partition_extractor=lambda x: x,
            value_extractor=lambda x: x,
        )
        default_params = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
            max_partitions_contributed=1,
            max_contributions_per_partition=1,
            metrics=[pipeline_dp.Metrics.PRIVACY_ID_COUNT])

        test_cases = [
            {
                "desc": "None col",
                "col": None,
                "params": default_params,
                "data_extractor": default_extractors,
            },
            {
                "desc": "empty col",
                "col": [],
                "params": default_params,
                "data_extractor": default_extractors
            },
            {
                "desc": "none params",
                "col": [0],
                "params": None,
                "data_extractor": default_extractors,
            },
            {
                "desc": "None data_extractor",
                "col": [0],
                "params": default_params,
                "data_extractor": None,
            },
            {
                "desc": "data_extractor with an incorrect type",
                "col": [0],
                "params": default_params,
                "data_extractor": 1,
            },
        ]

        for test_case in test_cases:
            with self.assertRaises(Exception, msg=test_case["desc"]):
                budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                          total_delta=1e-10)
                engine = pipeline_dp.DPEngine(
                    budget_accountant=budget_accountant,
                    backend=pipeline_dp.LocalBackend())
                engine.aggregate(test_case["col"], test_case["params"],
                                 test_case["data_extractor"])
def calc_dp_rating_metrics(movie_views, backend, public_partitions):
    """Computes DP metrics."""

    # Set the total privacy budget.
    budget_accountant = pipeline_dp.NaiveBudgetAccountant(total_epsilon=1,
                                                          total_delta=1e-6)

    # Create a DPEngine instance.
    dp_engine = pipeline_dp.DPEngine(budget_accountant, backend)

    params = pipeline_dp.AggregateParams(
        noise_kind=pipeline_dp.NoiseKind.LAPLACE,
        metrics=[
            pipeline_dp.Metrics.COUNT, pipeline_dp.Metrics.SUM,
            pipeline_dp.Metrics.MEAN, pipeline_dp.Metrics.VARIANCE
        ] + ([pipeline_dp.Metrics.PRIVACY_ID_COUNT]
             if not FLAGS.contribution_bounds_already_enforced else []),
        max_partitions_contributed=2,
        max_contributions_per_partition=1,
        min_value=1,
        max_value=5,
        contribution_bounds_already_enforced=FLAGS.
        contribution_bounds_already_enforced)

    value_extractor = lambda mv: mv.rating

    if FLAGS.vector_metrics:
        # Specify which DP aggregated metrics to compute for vector values.
        params.metrics = [pipeline_dp.Metrics.VECTOR_SUM]
        params.vector_size = 5  # Size of ratings vector
        params.vector_max_norm = 1
        value_extractor = lambda mv: encode_one_hot(mv.rating - 1, params.
                                                    vector_size)

    # Specify how to extract privacy_id, partition_key and value from an
    # element of movie view collection.
    data_extractors = pipeline_dp.DataExtractors(
        partition_extractor=lambda mv: mv.movie_id,
        privacy_id_extractor=(lambda mv: mv.user_id)
        if not FLAGS.contribution_bounds_already_enforced else None,
        value_extractor=value_extractor)

    # Run aggregation.
    dp_result = dp_engine.aggregate(movie_views, params, data_extractors,
                                    public_partitions)

    budget_accountant.compute_budgets()

    reports = dp_engine.explain_computations_report()
    for report in reports:
        print(report)

    return dp_result
Exemple #16
0
    def expand(self, pcol: pvalue.PCollection) -> pvalue.PCollection:
        backend = pipeline_dp.BeamBackend()
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: self._partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0])

        dp_result = dp_engine.select_partitions(pcol,
                                                self._select_partitions_params,
                                                data_extractors)

        return dp_result
Exemple #17
0
    def test_select_partitions(self):
        # This test is probabilistic, but the parameters were chosen to ensure
        # the test has passed at least 10000 runs.

        # Arrange
        params = SelectPartitionsParams(max_partitions_contributed=1)

        budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                  total_delta=1e-5)

        # Generate dataset as a list of (user, partition_key) tuples.
        # There partitions are generated to reflect several scenarios.

        # A partition with sufficient amount of users.
        col = [(u, "pk-many-contribs") for u in range(25)]

        # A partition with many contributions, but only a few unique users.
        col += [(100 + u // 10, "pk-many-contribs-few-users")
                for u in range(30)]

        # A partition with few contributions.
        col += [(200 + u, "pk-few-contribs") for u in range(3)]

        # Generating 30 partitions, each with the same group of 25 users
        # 25 users is sufficient to keep the partition, but because of
        # contribution bounding, much less users per partition will be kept.
        for i in range(30):
            col += [(500 + u, f"few-contribs-after-bound{i}")
                    for u in range(25)]

        col = list(col)
        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: x[0],
            partition_extractor=lambda x: x[1])

        engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                      backend=pipeline_dp.LocalBackend())

        col = engine.select_partitions(col=col,
                                       params=params,
                                       data_extractors=data_extractor)
        budget_accountant.compute_budgets()

        col = list(col)

        # Assert
        # Only one partition is retained, the one that has many unique _after_
        # applying the "max_partitions_contributed" bound is retained.
        self.assertEqual(["pk-many-contribs"], col)
Exemple #18
0
 def create_dp_engine_default(accountant: NaiveBudgetAccountant = None,
                              backend: PipelineBackend = None):
     if not accountant:
         accountant = NaiveBudgetAccountant(total_epsilon=1,
                                            total_delta=1e-10)
     if not backend:
         backend = pipeline_dp.LocalBackend()
     dp_engine = pipeline_dp.DPEngine(accountant, backend)
     aggregator_params = pipeline_dp.AggregateParams(
         noise_kind=pipeline_dp.NoiseKind.LAPLACE,
         metrics=[],
         max_partitions_contributed=1,
         max_contributions_per_partition=1)
     dp_engine._report_generators.append(ReportGenerator(aggregator_params))
     dp_engine._add_report_stage("DP Engine Test")
     return dp_engine
Exemple #19
0
    def test_contribution_bounding_empty_col(self):
        input_col = []
        max_partitions_contributed = 2
        max_contributions_per_partition = 2

        dp_engine = pipeline_dp.DPEngine(
            NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10),
            pipeline_dp.LocalPipelineOperations())
        bound_result = list(
            dp_engine._bound_contributions(
                input_col,
                max_partitions_contributed=max_partitions_contributed,
                max_contributions_per_partition=max_contributions_per_partition,
                aggregator_fn=dp_engineTest.aggregator_fn))

        self.assertFalse(bound_result)
Exemple #20
0
    def test_aggregate_public_partitions_add_empty_public_partitions(self):
        # Arrange
        aggregator_params = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
            metrics=[
                agg.Metrics.COUNT, agg.Metrics.SUM,
                agg.Metrics.PRIVACY_ID_COUNT
            ],
            min_value=0,
            max_value=1,
            max_partitions_contributed=1,
            max_contributions_per_partition=1,
            public_partitions=["pk0", "pk10", "pk11"])

        # Set a high budget to add close to 0 noise.
        budget_accountant = NaiveBudgetAccountant(total_epsilon=100000,
                                                  total_delta=1 - 1e-10)

        # Input collection has 10 elements, such that each privacy id
        # contributes 1 time and each partition has 1 element.
        col = list(range(10))
        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: x,
            partition_extractor=lambda x: f"pk{x}",
            value_extractor=lambda x: 1)

        engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                      backend=pipeline_dp.LocalBackend())

        col = engine.aggregate(col=col,
                               params=aggregator_params,
                               data_extractors=data_extractor)
        budget_accountant.compute_budgets()

        col = list(col)
        partition_keys = [x[0] for x in col]
        # Assert

        # Only public partitions ("pk0") should be kept and empty public
        # partitions ("pk10", "pk11") should be added.
        self.assertEqual(["pk0", "pk10", "pk11"], partition_keys)
        self.assertAlmostEqual(1, col[0][1][0])  # "pk0" COUNT ≈ 1
        self.assertAlmostEqual(1, col[0][1][1])  # "pk0" SUM ≈ 1
        self.assertAlmostEqual(1, col[0][1][2])  # "pk0" PRIVACY_ID_COUNT ≈ 1
        self.assertAlmostEqual(0, col[1][1][0])  # "pk10" COUNT ≈ 0
        self.assertAlmostEqual(0, col[1][1][1])  # "pk10" SUM ≈ 0
        self.assertAlmostEqual(0, col[1][1][2])  # "pk10" PRIVACY_ID_COUNT ≈ 0
Exemple #21
0
 def test_select_private_partitions(self):
     input_col = [("pid1", ('pk1', 1)), ("pid1", ('pk1', 2)),
                  ("pid1", ('pk2', 3)), ("pid1", ('pk2', 4)),
                  ("pid1", ('pk2', 5)), ("pid1", ('pk3', 6)),
                  ("pid1", ('pk4', 7)), ("pid2", ('pk4', 8))]
     max_partitions_contributed = 3
     engine = pipeline_dp.DPEngine(
         NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10),
         pipeline_dp.LocalPipelineOperations())
     groups = engine._ops.group_by_key(input_col, None)
     groups = engine._ops.map_values(groups,
                                     lambda group: _MockAccumulator(group))
     groups = list(groups)
     expected_data_filtered = [("pid1",
                                _MockAccumulator([
                                    ('pk1', 1),
                                    ('pk1', 2),
                                    ('pk2', 3),
                                    ('pk2', 4),
                                    ('pk2', 5),
                                    ('pk3', 6),
                                    ('pk4', 7),
                                ])),
                               ("pid2", _MockAccumulator([('pk4', 8)]))]
     self._mock_and_assert_private_partitions(engine, groups, 0,
                                              expected_data_filtered,
                                              max_partitions_contributed)
     expected_data_filtered = [
         ("pid1",
          _MockAccumulator([
              ('pk1', 1),
              ('pk1', 2),
              ('pk2', 3),
              ('pk2', 4),
              ('pk2', 5),
              ('pk3', 6),
              ('pk4', 7),
          ])),
     ]
     self._mock_and_assert_private_partitions(engine, groups, 3,
                                              expected_data_filtered,
                                              max_partitions_contributed)
     expected_data_filtered = []
     self._mock_and_assert_private_partitions(engine, groups, 100,
                                              expected_data_filtered,
                                              max_partitions_contributed)
Exemple #22
0
    def variance(self,
                 variance_params: aggregate_params.VarianceParams,
                 public_partitions=None) -> RDD:
        """Computes a DP variance.

        Args:
            variance_params: parameters for calculation
            public_partitions: A collection of partition keys that will be present in
          the result. Optional. If not provided, partitions will be selected in a DP
          manner.
        """

        backend = pipeline_dp.SparkRDDBackend(self._rdd.context)
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=variance_params.noise_kind,
            metrics=[pipeline_dp.Metrics.VARIANCE],
            max_partitions_contributed=variance_params.
            max_partitions_contributed,
            max_contributions_per_partition=variance_params.
            max_contributions_per_partition,
            min_value=variance_params.min_value,
            max_value=variance_params.max_value,
            budget_weight=variance_params.budget_weight)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: variance_params.partition_extractor(x[
                1]),
            privacy_id_extractor=lambda x: x[0],
            value_extractor=lambda x: variance_params.value_extractor(x[1]))

        dp_result = dp_engine.aggregate(self._rdd, params, data_extractors,
                                        public_partitions)
        # dp_result : (partition_key, (variance=dp_variance))

        # aggregate() returns a namedtuple of metrics for each partition key.
        # Here is only one metric - variance. Extract it from the list.
        dp_result = backend.map_values(dp_result, lambda v: v.variance,
                                       "Extract variance")
        # dp_result : (partition_key, dp_variance)

        return dp_result
Exemple #23
0
    def test_contribution_bounding_bound_input_nothing_dropped(self):
        input_col = [("pid1", 'pk1', 1), ("pid1", 'pk1', 2),
                     ("pid1", 'pk2', 3), ("pid1", 'pk2', 4)]
        max_partitions_contributed = 2
        max_contributions_per_partition = 2

        dp_engine = pipeline_dp.DPEngine(
            NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10),
            pipeline_dp.LocalPipelineOperations())
        bound_result = list(
            dp_engine._bound_contributions(
                input_col,
                max_partitions_contributed=max_partitions_contributed,
                max_contributions_per_partition=max_contributions_per_partition,
                aggregator_fn=dp_engineTest.aggregator_fn))

        expected_result = [(('pid1', 'pk2'), (2, 7, 25)),
                           (('pid1', 'pk1'), (2, 3, 5))]
        self.assertEqual(set(expected_result), set(bound_result))
Exemple #24
0
    def test_aggregate_public_partitions_drop_non_public(self):
        # Arrange
        aggregator_params = pipeline_dp.AggregateParams(
            noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
            metrics=[
                agg.Metrics.COUNT, agg.Metrics.SUM,
                agg.Metrics.PRIVACY_ID_COUNT
            ],
            min_value=0,
            max_value=1,
            max_partitions_contributed=1,
            max_contributions_per_partition=1,
            public_partitions=["pk0", "pk1", "pk10"])

        # Set an arbitrary budget, we are not interested in the DP outputs, only
        # the partition keys.
        budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                  total_delta=1e-10)

        # Input collection has 10 elements, such that each privacy id
        # contributes 1 time and each partition has 1 element.
        col = list(range(10))
        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: x,
            partition_extractor=lambda x: f"pk{x}",
            value_extractor=lambda x: x)

        engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                      backend=pipeline_dp.LocalBackend())

        col = engine.aggregate(col=col,
                               params=aggregator_params,
                               data_extractors=data_extractor)
        budget_accountant.compute_budgets()

        col = list(col)
        partition_keys = [x[0] for x in col]
        # Assert

        # Only public partitions (0, 1, 2) should be kept and the rest of the
        # partitions should be dropped.
        self.assertEqual(["pk0", "pk1", "pk10"], partition_keys)
Exemple #25
0
    def privacy_id_count(
            self,
            privacy_id_count_params: aggregate_params.PrivacyIdCountParams,
            public_partitions=None) -> RDD:
        """Computes a DP Privacy ID count.

        Args:
            privacy_id_count_params: parameters for calculation
            public_partitions: A collection of partition keys that will be present in
          the result. Optional. If not provided, partitions will be selected in a DP
          manner.
        """

        backend = pipeline_dp.SparkRDDBackend(self._rdd.context)
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=privacy_id_count_params.noise_kind,
            metrics=[pipeline_dp.Metrics.PRIVACY_ID_COUNT],
            max_partitions_contributed=privacy_id_count_params.
            max_partitions_contributed,
            max_contributions_per_partition=1)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: privacy_id_count_params.
            partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0],
            # PrivacyIdCount ignores values.
            value_extractor=lambda x: None)

        dp_result = dp_engine.aggregate(self._rdd, params, data_extractors,
                                        public_partitions)
        # dp_result : (partition_key, (privacy_id_count=dp_privacy_id_count))

        # aggregate() returns a namedtuple of metrics for each partition key.
        # Here is only one metric - privacy id count. Extract it from the list.
        dp_result = backend.map_values(dp_result, lambda v: v.privacy_id_count,
                                       "Extract privacy id count")
        # dp_result : (partition_key, dp_privacy_id_count)

        return dp_result
Exemple #26
0
 def test_check_invalid_bounding_params(self, error_msg, min_value,
                                        max_value,
                                        max_partitions_contributed,
                                        max_contributions_per_partition,
                                        max_contributions, metrics):
     with self.assertRaisesRegex(ValueError, error_msg):
         budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                   total_delta=1e-10)
         engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant,
                                       backend=pipeline_dp.LocalBackend())
         engine.aggregate(
             [0],
             pipeline_dp.AggregateParams(
                 noise_kind=pipeline_dp.NoiseKind.GAUSSIAN,
                 max_partitions_contributed=max_partitions_contributed,
                 max_contributions_per_partition=
                 max_contributions_per_partition,
                 min_value=min_value,
                 max_value=max_value,
                 max_contributions=max_contributions,
                 metrics=metrics), self._get_default_extractors())
Exemple #27
0
    def test_aggregate_computation_graph_verification(
            self, mock_bound_contributions):
        # Arrange
        aggregator_params = pipeline_dp.AggregateParams([agg.Metrics.COUNT], 5,
                                                        3)
        budget_accountant = NaiveBudgetAccountant(total_epsilon=1,
                                                  total_delta=1e-10)
        accumulator_factory = AccumulatorFactory(
            params=aggregator_params, budget_accountant=budget_accountant)
        accumulator_factory.initialize()

        col = [[1], [2], [3], [3]]
        data_extractor = pipeline_dp.DataExtractors(
            privacy_id_extractor=lambda x: "pid" + str(x),
            partition_extractor=lambda x: "pk" + str(x),
            value_extractor=lambda x: x)

        mock_bound_contributions.return_value = [
            [("pid1", "pk1"),
             CountAccumulator(params=None, values=[1])],
            [("pid2", "pk2"),
             CountAccumulator(params=None, values=[1])],
            [("pid3", "pk3"),
             CountAccumulator(params=None, values=[2])],
        ]

        engine = pipeline_dp.DPEngine(
            budget_accountant=budget_accountant,
            ops=pipeline_dp.LocalPipelineOperations())
        col = engine.aggregate(col=col,
                               params=aggregator_params,
                               data_extractors=data_extractor)

        # Assert
        mock_bound_contributions.assert_called_with(
            unittest.mock.ANY, aggregator_params.max_partitions_contributed,
            aggregator_params.max_contributions_per_partition,
            unittest.mock.ANY)
Exemple #28
0
 def test_aggregate_report(self, mock_create_accumulator_params_function):
     col = [[1], [2], [3], [3]]
     data_extractor = pipeline_dp.DataExtractors(
         privacy_id_extractor=lambda x: "pid" + str(x),
         partition_extractor=lambda x: "pk" + str(x),
         value_extractor=lambda x: x)
     params1 = pipeline_dp.AggregateParams(
         max_partitions_contributed=3,
         max_contributions_per_partition=2,
         low=1,
         high=5,
         metrics=[
             pipeline_dp.Metrics.PRIVACY_ID_COUNT,
             pipeline_dp.Metrics.COUNT, pipeline_dp.Metrics.MEAN
         ],
     )
     params2 = pipeline_dp.AggregateParams(
         max_partitions_contributed=1,
         max_contributions_per_partition=3,
         low=2,
         high=10,
         metrics=[
             pipeline_dp.Metrics.VAR, pipeline_dp.Metrics.SUM,
             pipeline_dp.Metrics.MEAN
         ],
         public_partitions=list(range(1, 40)),
     )
     mock_create_accumulator_params_function.return_value = [
         pipeline_dp.accumulator.AccumulatorParams(
             pipeline_dp.accumulator.CountAccumulator, None)
     ]
     engine = pipeline_dp.DPEngine(
         budget_accountant=NaiveBudgetAccountant(total_epsilon=1,
                                                 total_delta=1e-10),
         ops=pipeline_dp.LocalPipelineOperations())
     engine.aggregate(col, params1, data_extractor)
     engine.aggregate(col, params2, data_extractor)
     self.assertEqual(len(engine._report_generators), 2)  # pylint: disable=protected-access
Exemple #29
0
    def select_partitions(
            self,
            select_partitions_params: aggregate_params.SelectPartitionsParams,
            partition_extractor: Callable) -> RDD:
        """Computes a collection of partition keys in a DP manner.

        Args:
            select_partitions_params: parameters for calculation
            partition_extractor: function for extracting partition key from each input element
        """

        backend = pipeline_dp.SparkRDDBackend(self._rdd.context)
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.SelectPartitionsParams(
            max_partitions_contributed=select_partitions_params.
            max_partitions_contributed)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0])

        return dp_engine.select_partitions(self._rdd, params, data_extractors)
Exemple #30
0
    def privacy_id_count(
            self, privacy_id_count_params: aggregate_params.PrivacyIdCountParams
    ) -> RDD:
        """Computes a DP Privacy ID count.

        Args:
            privacy_id_count_params: parameters for calculation
        """

        backend = pipeline_dp.SparkRDDBackend(self._rdd.context)
        dp_engine = pipeline_dp.DPEngine(self._budget_accountant, backend)

        params = pipeline_dp.AggregateParams(
            noise_kind=privacy_id_count_params.noise_kind,
            metrics=[pipeline_dp.Metrics.PRIVACY_ID_COUNT],
            max_partitions_contributed=privacy_id_count_params.
            max_partitions_contributed,
            max_contributions_per_partition=1,
            public_partitions=privacy_id_count_params.public_partitions)

        data_extractors = pipeline_dp.DataExtractors(
            partition_extractor=lambda x: privacy_id_count_params.
            partition_extractor(x[1]),
            privacy_id_extractor=lambda x: x[0],
            # PrivacyIdCount ignores values.
            value_extractor=lambda x: None)

        dp_result = dp_engine.aggregate(self._rdd, params, data_extractors)
        # dp_result : (partition_key, [dp_privacy_id_count])

        # aggregate() returns a list of metrics for each partition key.
        # Here is only one metric - privacy_id_count. Remove list.
        dp_result = backend.map_values(dp_result, lambda v: v[0], "Unnest list")
        # dp_result : (partition_key, dp_privacy_id_count)

        return dp_result