def test_engine(refdata, stocks, data_path):
    def list_symbols():
        return ['A', 'AA']

    mock_iex.get_available_symbols(refdata)
    mock_iex.get_key_stats(stocks)
    mock_iex.get_chart(stocks)

    eng = LivePipelineEngine(list_symbols)
    ADV = AverageDollarVolume(window_length=20, )
    top5 = ADV.top(5, groupby=Sector())
    pipe = Pipeline({
        'top5': top5,
        'close': USEquityPricing.close.latest,
    },
                    screen=top5)

    df = eng.run_pipeline(pipe)
    assert sorted(df.columns) == ['close', 'top5']

    pipe = Pipeline({
        'close': USEquityPricing.close.latest,
    })

    df = eng.run_pipeline(pipe)
    assert df.shape == (2, 1)
    assert df.close['AA'] > 40
Exemple #2
0
    def pipeline_output(self, name):
        try:
            from pipeline_live.engine import LivePipelineEngine
        except ImportError:
            raise RuntimeError('pipeline-live is not installed')

        finder = self.asset_finder

        def list_symbols():
            return sorted([a.symbol for a in finder._asset_cache.values()])

        eng = LivePipelineEngine(list_symbols)
        output = eng.run_pipeline(self._pipelines[name])
        output.index = pd.Index(finder.lookup_symbols(output.index))
        return output
def initialize (context): # runs once when script starts
    log.info("Welcome Vincent Perkins")
    #context is a python dictionary that contains information on portfolio/performance.
    context.idr_losers = pd.Series(([])) #intraday losing stocks
    context.day_count = 0
    context.daily_message = "Day {}."
    context.open_orders = get_open_orders()
    context.backup_stocks = symbols('BAM')
    context.age = {} #empty dictionary maps one value to another
    #context.usep = USEquityPricing() #USEquityPricing object

    #Factor criteria
    close_price = USEquityPricing.close.latest
    vol = USEquityPricing.volume.latest
    ann_var = AnnualizedVolatility()
    rsi = RSI()

    #screening
    mask_custom = (IsPrimaryShare() & (vol < 150000) & (close_price > 1) & (close_price < 3) & (ann_var > 0.815) & (rsi < 50))
    stockBasket = USEquityPricing.close.latest.top(3000,  mask = mask_custom)
    
    #Column construction
    pipe_columns = {'close_price': close_price, 'volume': vol, 'ann_var': ann_var}
    
    #Creation of actual pipeline
    pipe = Pipeline(columns = pipe_columns, screen = stockBasket)
    attach_pipeline(pipe, 'Stocks')
    #Testing
    log.info(USEquityPricing.get_loader())
    eng = LivePipelineEngine(list_symbols)
    df = eng.run_pipeline(pipe)
    log.info(df)

    #Schedule functions
    schedule_function(day_start, date_rules.every_day(), time_rules.market_open(hours = 0, minutes = 1))
    schedule_function(late_day_trade, date_rules.every_day(), time_rules.market_open(hours = 5, minutes = 56)) #offset open tells when to run a user defined function
    schedule_function(check_portfolio, date_rules.every_day(), time_rules.market_open(hours = 0, minutes = 1))
    schedule_function(morning_day_trade1, date_rules.every_day(), time_rules.market_open(hours = 0, minutes = 15))
    schedule_function(morning_day_trade2, date_rules.every_day(), time_rules.market_open(hours = 0, minutes = 45))
    schedule_function(check_portfolio, date_rules.every_day(), time_rules.market_open(hours = 0, minutes = 48))
    schedule_function(cancel_open_orders, date_rules.every_day(),time_rules.market_close(hours=0, minutes=1))
from pipeline_live.engine import LivePipelineEngine
from pipeline_live.data.sources.iex import list_symbols
from pipeline_live.data.alpaca.pricing import USEquityPricing
from pipeline_live.data.alpaca.factors import AverageDollarVolume
from pipeline_live.data.polygon.fundamentals import PolygonCompany
from zipline.pipeline import Pipeline
from dotenv import load_dotenv

load_dotenv()

engine = LivePipelineEngine(list_symbols)
top5 = AverageDollarVolume(window_length=20).top(5)
pipe = Pipeline(
    {
        "close": USEquityPricing.close.latest,
        "marketcap": PolygonCompany.marketcap.latest,
    },
    screen=top5,
)

result = engine.run_pipeline(pipe)
print(result)
Exemple #5
0
from pipeline_live.engine import LivePipelineEngine
from pipeline_live.data.alpaca.pricing import USEquityPricing
from pipeline_live.data.alpaca.factors import AverageDollarVolume
from pipeline_live.data.sources.polygon import list_symbols
from zipline.pipeline import Pipeline
from src.ziplineStrategies.Filters.CurVsAvgVolFilter import curVsAvgVolFilter
# from src.ziplineStrategies.Filters.CompanySizeFilter import isMidToLargeCap

from pipeline_live.data.iex.factors import SimpleMovingAverage
from pylivetrader.api import (symbol, pipeline_output, order_target_percent)
import logging

ENGINE = LivePipelineEngine(list_symbols)


def initialize(context):
    context.params = {
        'lookback': 20,
        'smaSlowLookback': 30,
        'smaFastLookback': 10
    }
    context.position_size = .1
    context.stopLevel = .9
    context.leverageLimit = 1.5
    context.stopPriceMap = {}


def make_pipeline(context):
    advFilter = curVsAvgVolFilter(context.params.get('lookback'))
    # midToLargeFilter = isMidToLargeCap(context.params.get('lookback'))
    smaSlow = SimpleMovingAverage(