#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_bcm_circuit_monthly_cage_agg", "DM_BCM_CIRCUIT_MONTHLY_CAGE_AGG") pipeline_mgr.execute_pipeline("aggregate_etl") pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_bcm_circuit_monthly_cage_agg_merge1", "DM_BCM_CIRCUIT_MONTHLY_CAGE_AGG") pipeline_mgr.execute_pipeline("query_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_bcm_cage_agg", "DM_BCM_CAGE_MONTHLY_IBX_AGG") pipeline_mgr.execute_pipeline("aggregate_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_large_deals_hist_cage_agg", "DM_PLP_LARGE_DEALS_HIST_CAGE_AGG") pipeline_mgr.execute_pipeline("aggregate_etl")
import click if __package__ is None or __package__ == '': from pipeline_manager import PipelineManager else: from src.data_mining.pipeline_manager import PipelineManager pipeline_manager = PipelineManager() @click.group() def main(): pass @main.command() @main.option(param_decls='-p', show_default='--pipe-line', help='predefined pipeline to be trained', required=True) @main.option( param_decls='-d', show_default='--dev-mode', help= 'Development mode. If True then only small sample of data will be used', is_flag=True, required=False) @main.option(param_decls='-t', show_default='--tag', help='Tagging', required=False)
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_power_cage_agg", "DM_PLP_POWER_CAGE_AGG") pipeline_mgr.execute_pipeline("aggregate_etl") pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_power_cage_agg_merge1", "DM_PLP_POWER_CAGE_AGG") pipeline_mgr.execute_pipeline("query_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_dcim_asset_trend_agg", "DM_DCIM_REFINED_ASSET_TREND_MONTHLY_AGG") pipeline_mgr.execute_pipeline("aggregate_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_space_cabe_cage_agg", "DM_PLP_SPACE_CABE_CAGE_AGG") pipeline_mgr.execute_pipeline("aggregate_etl") pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_space_cabe_cage_agg_merge1", "DM_PLP_SPACE_CABE_CAGE_AGG") pipeline_mgr.execute_pipeline("query_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_dcim_asset_map_hive_extract", "DM_DCIM_REFINED_ASSET_MAP") pipeline_mgr.execute_pipeline("hive_etl")
from pipeline.preprocessing.csv_parser import CSVParser from pipeline.data.reference_tests import TimeseriesTest, TestTypes from view.visualization import Visualization from pipeline.preprocessing.csv_parser import CSVParser def henon_map_test(): TimeseriesTest(type=TestTypes.HENON, dimension=2, level=7, training_length=5000, lambda_parameter=pow(2, -22), training_accuracy=pow(10, -20)) def jumpmap_test(): TimeseriesTest(type=TestTypes.JUMP_MAP, dimension=5, level=5, training_length=5000, lambda_parameter=pow(10, -4), training_accuracy=pow(10, -13), with_adaptivity=True) if __name__ == "__main__": #henon_map_test() #jumpmap_test() PipelineManager() #Visualization().plot_rmse_evolution() #CSVParser().get_mean_rmse()
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_sbl_order_churn_asset", "PLP_SBL_ORDER_CHURN_ASSET") pipeline_mgr.execute_pipeline("query_load_etl") pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_sbl_order_churn_asset_merge1", "PLP_SBL_ORDER_CHURN_ASSET") pipeline_mgr.execute_pipeline("query_etl") pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_sbl_order_churn_asset_merge2", "PLP_SBL_ORDER_CHURN_ASSET") pipeline_mgr.execute_pipeline("query_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_pipeline_agg", "DM_PLP_PIPELINE_AGG") pipeline_mgr.execute_pipeline("aggregate_etl")
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pipeline_manager import PipelineManager if __name__ == '__main__': project_id = sys.argv[1] batch_id = sys.argv[2] batch_run_id = sys.argv[3] pipeline_mgr = PipelineManager(project_id, batch_id, batch_run_id, "etl_bcm_cage_hive_extract", "DM_BCM_CAGE_DAILY_DATA") pipeline_mgr.execute_pipeline("hive_etl")