elif opt == "--output_format": out_format = val elif opt == "--core_in_dir": core_in_dir = val elif opt == "--core_filter": core_filter = val elif opt in ("-h", "--help"): usage() sys.exit(0) else: usage(1) log_utils.config_logging(log_file) utils.assert_option_not_none(in_file_prefix, "Input file prefix required", usage) utils.assert_option_not_none(out_dir, "Output directory required", usage) utils.assert_option_not_none(in_format, "Input file format required", usage) gz = eval(gz) utils.assert_bool(gz, "--gz value must be True/False", usage) if not core_in_dir is None: build_space_batch(in_file_prefix, in_format, out_dir, out_format, core_in_dir, core_filter, gz) else: utils.assert_option_not_none(core_space_file, "Input file required", usage) build_space(in_file_prefix, in_format, out_dir, out_format, core_space_file, gz) if __name__ == "__main__": main(sys.argv)
usage() sys.exit(0) else: usage(1) log_utils.config_logging(log_file) utils.assert_option_not_none(in_file, "Input file required", usage) utils.assert_option_not_none(out_dir, "Output directory required", usage) utils.assert_option_not_none(model, "Model to be trained required", usage) utils.assert_option_not_none(arg_space, "Argument space(s) file(s) required", usage) utils.assert_option_not_none(phrase_space, "Phrase space file required", usage) crossvalidation = eval(crossvalidation) intercept = eval(intercept) utils.assert_bool(intercept, "intercept must be True/False", usage) utils.assert_bool(crossvalidation, "crossvalidation must be True/False", usage) export_params = eval(export_params) utils.assert_bool(export_params, "export_params must be True/False", usage) if not param is None: param = float(param) if not param_range is None: param_range = [float(param) for param in param_range] if not crossvalidation and regression == "ridge": utils.assert_option_not_none(param, "Cannot run (no-crossvalidation) RidgeRegression with no lambda value!", usage) train_model(in_file, out_dir, model, arg_space, phrase_space, regression, crossvalidation, intercept, param, param_range, export_params)
else: usage(1) log_utils.config_logging(log_file) utils.assert_option_not_none(in_file, "Input file required", usage) utils.assert_option_not_none(out_dir, "Output directory required", usage) utils.assert_option_not_none(model, "Model to be trained required", usage) utils.assert_option_not_none(arg_space, "Argument space(s) file(s) required", usage) utils.assert_option_not_none(phrase_space, "Phrase space file required", usage) crossvalidation = eval(crossvalidation) intercept = eval(intercept) utils.assert_bool(intercept, "intercept must be True/False", usage) utils.assert_bool(crossvalidation, "crossvalidation must be True/False", usage) export_params = eval(export_params) utils.assert_bool(export_params, "export_params must be True/False", usage) if not param is None: param = float(param) if not param_range is None: param_range = [float(param) for param in param_range] if not crossvalidation and regression == "ridge": utils.assert_option_not_none( param, "Cannot run (no-crossvalidation) RidgeRegression with no lambda value!", usage)
normalizations = val.split(",") elif opt in ("-l", "--log"): log_file = val elif opt == "--input_format": in_format = val elif opt == "--output_format": out_format = val elif opt in ("-h", "--help"): usage(0) else: usage(1) if not log_file is None: log_utils.config_logging(log_file) utils.assert_option_not_none(in_file_prefix, "Input file prefix required", usage) utils.assert_option_not_none(out_dir, "Output directory required", usage) utils.assert_option_not_none(in_format, "Input format required", usage) gz = eval(gz) utils.assert_bool(gz, "--gz value must be True/False", usage) build_spaces(in_file_prefix, in_format, out_dir, out_format, weightings, selections, reductions, normalizations, gz) if __name__ == '__main__': main(sys.argv)