def test_export_load(self, data_loader, tmpdir):
        f1, target, model = self._create_base_components()
        pipeline = BasePipeline(feature=f1,
                                target=target,
                                model=model,
                                metric=median_absolute_relative_error,
                                out_name=None)
        res = pipeline.fit(data_loader, tickers)
        df = pipeline.execute(data_loader, tickers)
        pipeline.export_core('{}/pipeline'.format(str(tmpdir)))
        pipeline = BasePipeline.load('{}/pipeline.pickle'.format(str(tmpdir)))
        df1 = pipeline.execute(data_loader, tickers[:100])

        np.testing.assert_array_equal(df['y_0'].values, df1['y_0'].values)
Exemple #2
0
        agg_day_counts=pipeline_config['agg_day_counts'],
        max_back_quarter=pipeline_config['max_back_quarter'])

    feature = FeatureMerger(fc1, fc2, on='ticker')
    feature = FeatureMerger(feature, fc3, on=['ticker', 'date'])
    feature = FeatureMerger(feature, fc4, on=['ticker', 'date'])

    target = DailyAggTarget(col='marketcap',
                            horizon=pipeline_config['target_horizon'],
                            foo=down_std_norm)

    base_models = [
        lgbm.sklearn.LGBMRegressor(),
        ctb.CatBoostRegressor(verbose=False)
    ]

    ansamble = AnsambleModel(base_models=base_models,
                             bagging_fraction=0.7,
                             model_cnt=20)

    model = TimeSeriesOOFModel(ansamble, time_column='date', fold_cnt=20)

    pipeline = BasePipeline(feature=feature,
                            target=target,
                            model=model,
                            metric=median_absolute_relative_error)

    result = pipeline.fit(data_loader, ticker_list)
    print(result)
    pipeline.export_core('models_data/marketcap_down_std')
Exemple #3
0
        agg_day_counts=pipeline_config['agg_day_counts'],
        max_back_quarter=pipeline_config['max_back_quarter'])
    
    feature = FeatureMerger(fc1, fc2, on='ticker')
    feature = FeatureMerger(feature, fc3, on=['ticker', 'date'])

    target = QuarterlyTarget(col='marketcap', quarter_shift=0)

    base_models = [LogExpModel(lgbm.sklearn.LGBMRegressor()),
                   LogExpModel(ctb.CatBoostRegressor(verbose=False))]
                   
    ansamble = AnsambleModel(
        base_models=base_models, 
        bagging_fraction=pipeline_config['bagging_fraction'],
        model_cnt=pipeline_config['model_cnt'])

    model = GroupedOOFModel(ansamble, group_column='ticker', fold_cnt=5)

    pipeline = BasePipeline(feature=feature, 
                            target=target, 
                            model=model, 
                            metric=median_absolute_relative_error)
                            
    result = pipeline.fit(data_loader, ticker_list)
    print(result)
    pipeline.export_core('models_data/marketcap')    
    
    
    
    
    # normalized and there are no leakage.
    fc3 = DailyAggQuarterFeatures(columns=DAILY_AGG_COLUMNS,
                                  agg_day_counts=AGG_DAY_COUNTS,
                                  max_back_quarter=MAX_BACK_QUARTER)

    feature = FeatureMerger(fc1, fc2, on='ticker')
    feature = FeatureMerger(feature, fc3, on=['ticker', 'date'])

    target = QuarterlyTarget(col='marketcap', quarter_shift=0)

    base_models = [
        LogExpModel(lgbm.sklearn.LGBMRegressor()),
        LogExpModel(ctb.CatBoostRegressor(verbose=False))
    ]

    ensemble = EnsembleModel(base_models=base_models,
                             bagging_fraction=BAGGING_FRACTION,
                             model_cnt=MODEL_CNT)

    model = GroupedOOFModel(ensemble, group_column='ticker', fold_cnt=FOLD_CNT)

    pipeline = BasePipeline(feature=feature,
                            target=target,
                            model=model,
                            metric=median_absolute_relative_error,
                            out_name=OUT_NAME)

    result = pipeline.fit(data_loader, ticker_list)
    print(result)
    pipeline.export_core(SAVE_PATH)