Exemple #1
0
    def __call__(self, input, target):
        ## do something to both images

        input = Resize((1086, 1351), Image.BILINEAR)(input)
        target = Resize((1086, 1351), Image.NEAREST)(target)
        #input = Resize((512,1024), Image.BILINEAR)(input)
        #target = Resize((512,1024),Image.NEAREST)(target)

        if (self.augment):

            rotation_degree = 1
            shear_degree = 1
            input = RandomAffine(rotation_degree,
                                 None,
                                 None,
                                 shear_degree,
                                 resample=Image.BILINEAR,
                                 fillcolor=0)(input)
            target = RandomAffine(rotation_degree,
                                  None,
                                  None,
                                  shear_degree,
                                  resample=Image.NEAREST,
                                  fillcolor=255)(target)

            w, h = input.size
            nratio = random.uniform(0.5, 1.0)
            ni = random.randint(0, int(h - nratio * h))
            nj = random.randint(0, int(w - nratio * w))
            input = input.crop(
                (nj, ni, int(nj + nratio * w), int(ni + nratio * h)))
            target = target.crop(
                (nj, ni, int(nj + nratio * w), int(ni + nratio * h)))
            input = Resize((512, 1024), Image.BILINEAR)(input)
            target = Resize((512, 1024), Image.NEAREST)(target)

            brightness = 0.1
            contrast = 0.1
            saturation = 0.1
            hue = 0.1
            input = ColorJitter(brightness, contrast, saturation, hue)(input)

            hflip = random.random()
            if (hflip < 0.5):
                input = input.transpose(Image.FLIP_LEFT_RIGHT)
                target = target.transpose(Image.FLIP_LEFT_RIGHT)

        else:
            input = Resize((512, 1024), Image.BILINEAR)(input)
            target = Resize((512, 1024), Image.NEAREST)(target)

        input = ToTensor()(input)

        if (self.enc):
            target = Resize((64, 128), Image.NEAREST)(target)

        target = ToLabel()(target)
        target = Relabel(255, 27)(target)

        return input, target
Exemple #2
0
    def __call__(self, input, target):
        # do something to both images
        input =  Scale(self.height, Image.BILINEAR)(input)
        target = Scale(self.height, Image.NEAREST)(target)

        if(self.augment):
            # Random hflip
            hflip = random.random()
            if (hflip < 0.5):
                input = input.transpose(Image.FLIP_LEFT_RIGHT)
                target = target.transpose(Image.FLIP_LEFT_RIGHT)

        input = ToTensor()(input)
        
        target = ToLabel()(target)
        
        for iter in range(1,19):
            target = Relabel(iter, 255)(target)
        
        target = Relabel(19, 1)(target) 
        target = Relabel(20, 2)(target)
        target = Relabel(21, 3)(target)
        target = Relabel(22, 4)(target)
        target = Relabel(23, 5)(target)
        target = Relabel(24, 6)(target)
        target = Relabel(25, 7)(target)
        target = Relabel(26, 8)(target)
        target = Relabel(27, 9)(target) 
        
        return input, target
Exemple #3
0
    def __call__(self, input, target):
        # do something to both images
        input = Scale(self.height, Image.BILINEAR)(input)
        target = Scale(self.height, Image.NEAREST)(target)

        if (self.augment):
            # Random hflip
            hflip = random.random()
            if (hflip < 0.5):
                input = input.transpose(Image.FLIP_LEFT_RIGHT)
                target = target.transpose(Image.FLIP_LEFT_RIGHT)

            #Random translation 0-2 pixels (fill rest with padding
            transX = random.randint(-2, 2)
            transY = random.randint(-2, 2)

            input = ImageOps.expand(input,
                                    border=(transX, transY, 0, 0),
                                    fill=0)
            target = ImageOps.expand(target,
                                     border=(transX, transY, 0, 0),
                                     fill=255)  #pad label filling with 255
            input = input.crop(
                (0, 0, input.size[0] - transX, input.size[1] - transY))
            target = target.crop(
                (0, 0, target.size[0] - transX, target.size[1] - transY))

            #TODO future: additional augments
            #CenterCrop(256)
            #Normalize([.485, .456, .406], [.229, .224, .225]),

        input = ToTensor()(input)
        if (self.enc):
            target = Scale(int(self.height / 8), Image.NEAREST)(target)
        target = ToLabel()(target)
        target = Relabel(255, 19)(target)

        return input, target
Exemple #4
0
    cv2.imshow("test", cv_image)
    cv2.waitKey(-1)


def showTensorImage(tensor_image):
    pil_image = transforms.ToPILImage()(tensor_image).convert('RGB')
    showImage(pil_image)


if __name__ == "__main__":
    from torchvision.transforms import Compose, CenterCrop, Normalize
    from torchvision.transforms import ToTensor, ToPILImage
    from piwise.transform import Relabel, ToLabel, Colorize
    image_transform = ToPILImage()
    input_transform = Compose([
        CenterCrop(30),
        ToTensor(),
        #Normalize([.485, .456, .406], [.229, .224, .225]),
    ])
    target_transform = Compose([
        CenterCrop(30),
        ToLabel(),
        #Relabel(255, 21),
    ])

    dataset = VOC12("/data_1/data/VOC2012/VOCdevkit/VOC2012", input_transform,
                    target_transform)
    for image, label in dataset:
        print(label)
        #showTensorImage(image)
Exemple #5
0
    def __call__(self, input, target):
        # do something to both images
        input = Scale(self.height, Image.BILINEAR)(input)
        target = Scale(self.height, Image.NEAREST)(target)

        if (self.augment):
            # Random hflip
            hflip = random.random()
            if (hflip < 0.5):
                input = input.transpose(Image.FLIP_LEFT_RIGHT)
                target = target.transpose(Image.FLIP_LEFT_RIGHT)

            degree = random.randint(-20, 20)
            input = input.rotate(degree, resample=Image.BILINEAR, expand=True)
            target = target.rotate(degree, resample=Image.NEAREST, expand=True)

            w, h = input.size
            nratio = random.uniform(0.5, 1.0)
            ni = random.randint(0, int(h - nratio * h))
            nj = random.randint(0, int(w - nratio * w))
            input = input.crop(
                (nj, ni, int(nj + nratio * w), int(ni + nratio * h)))
            target = target.crop(
                (nj, ni, int(nj + nratio * w), int(ni + nratio * h)))
            input = Resize((480, 640), Image.BILINEAR)(input)
            target = Resize((480, 640), Image.NEAREST)(target)

            brightness_factor = random.uniform(0.8, 1.2)
            contrast_factor = random.uniform(0.8, 1.2)
            saturation_factor = random.uniform(0.8, 1.2)
            #sharpness_factor=random.uniform(0.0,2.0)
            hue_factor = random.uniform(-0.2, 0.2)

            enhancer1 = ImageEnhance.Brightness(input)
            input = enhancer1.enhance(brightness_factor)

            enhancer2 = ImageEnhance.Contrast(input)
            input = enhancer2.enhance(contrast_factor)

            enhancer3 = ImageEnhance.Color(input)
            input = enhancer3.enhance(saturation_factor)

            #enhancer4=ImageEnhance.Sharpness(input)
            #input=enhancer4.enhance(sharpness_factor)

            input_mode = input.mode
            h, s, v = input.convert('HSV').split()
            np_h = np.array(h, dtype=np.uint8)
            with np.errstate(over='ignore'):
                np_h += np.uint8(hue_factor * 255)
            h = Image.fromarray(np_h, 'L')
            input = Image.merge('HSV', (h, s, v)).convert(input_mode)

        else:
            input = Resize((480, 640), Image.BILINEAR)(input)
            target = Resize((480, 640), Image.NEAREST)(target)

        input = ToTensor()(input)

        if (self.enc):
            target = Resize((60, 80), Image.NEAREST)(target)
        target = ToLabel()(target)
        target = Relabel(255, 27)(target)

        return input, target