def test_pixel_intensity(): '''Test for function which determines sample temperature and plate temperature''' pixel_frames = edge_detection.input_file( '../musical-robot/musicalrobot/data/CHCl_CA_DES_5_31_19.tiff') n_frames = len(pixel_frames) img_eq = pixel_analysis.image_eq(n_frames, pixel_frames) column_sum, row_sum = pixel_analysis.pixel_sum(img_eq) n_columns = 12 n_rows = 8 sample_location = pixel_analysis.peak_values(column_sum, row_sum, n_columns, n_rows, img_eq) x_name = 'Row' y_name = 'Column' plate_name = 'plate_location' pixel_sample, pixel_plate = pixel_analysis.pixel_intensity( sample_location, pixel_frames, x_name, y_name, plate_name) assert isinstance(pixel_sample, list), 'Output is not a list' assert isinstance(pixel_plate, list), 'Output is not a list' assert len( pixel_sample ) == n_columns * n_rows, 'Temperature obtained for wrong number of samples' assert len( pixel_plate ) == n_columns * n_rows, 'Temperature obtained for wrong number of plate locations' return
def test_locations(): '''Test for functin which returns a dataframe containing row and column locations of samples and their respective plate location at which temperature profiles are monitored''' frames = edge_detection.input_file( '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff') crop_frame = [] for frame in frames: crop_frame.append(frame[35:85, 40:120]) pixel_frames = edge_detection.flip_frame(crop_frame) img_eq = pixel_analysis.image_eq(pixel_frames) column_sum, row_sum = pixel_analysis.pixel_sum(img_eq) n_columns = 3 n_rows = 3 r_peaks, c_peaks = pixel_analysis.peak_values(column_sum, row_sum, n_columns, n_rows, freeze_heat=False) sample_location = pixel_analysis.locations(r_peaks, c_peaks, img_eq) assert isinstance(sample_location, pd.DataFrame), 'Output is not a dataframe' assert len( sample_location ) == n_columns * n_rows, 'Wrong number of sample locations are present' return
def test_pixel_intensity(): '''Test for function which determines sample temperature and plate temperature''' frames = edge_detection.input_file( '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff') crop_frame = [] for frame in frames: crop_frame.append(frame[35:85, 40:120]) pixel_frames = edge_detection.flip_frame(crop_frame) img_eq = pixel_analysis.image_eq(pixel_frames) column_sum, row_sum = pixel_analysis.pixel_sum(img_eq) n_columns = 3 n_rows = 3 r_peaks, c_peaks = pixel_analysis.peak_values(column_sum, row_sum, n_columns, n_rows, freeze_heat=False) sample_location = pixel_analysis.locations(r_peaks, c_peaks, img_eq) x_name = 'Row' y_name = 'Column' plate_name = 'plate_location' pixel_sample, pixel_plate = pixel_analysis.pixel_intensity( sample_location, pixel_frames, x_name, y_name, plate_name) assert isinstance(pixel_sample, list), 'Output is not a list' assert isinstance(pixel_plate, list), 'Output is not a list' assert len( pixel_sample ) == n_columns * n_rows, 'Temperature obtained for wrong number of samples' assert len( pixel_plate ) == n_columns * n_rows, 'Temperature obtained for wrong number of plate locations' return
def test_peak_values(): '''Test for function which finds peaks from the column_sum and row_sum arrays and return a dataframe with sample locations and plate locations.''' pixel_frames = edge_detection.input_file( '../musical-robot/musicalrobot/data/CHCl_CA_DES_5_31_19.tiff') n_frames = len(pixel_frames) img_eq = pixel_analysis.image_eq(n_frames, pixel_frames) column_sum, row_sum = pixel_analysis.pixel_sum(img_eq) n_columns = 12 n_rows = 8 sample_location = pixel_analysis.peak_values(column_sum, row_sum, n_columns, n_rows, img_eq) assert isinstance(sample_location, pd.DataFrame), 'Output is not a dataframe' assert len( sample_location ) == n_columns * n_rows, 'Wrong number of sample locations are present' return
def test_peak_values(): '''Test for function which finds peaks from the column_sum and row_sum arrays and return a dataframe with sample locations and plate locations.''' frames = edge_detection.input_file('../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff') crop_frame = [] for frame in frames: crop_frame.append(frame[35:85,40:120]) pixel_frames = edge_detection.flip_frame(crop_frame) n_frames = len(pixel_frames) img_eq = pixel_analysis.image_eq(n_frames,pixel_frames) column_sum, row_sum = pixel_analysis.pixel_sum(img_eq) n_columns = 3 n_rows = 3 r_peaks, c_peaks = pixel_analysis.peak_values(column_sum,row_sum,n_columns,n_rows,img_eq) assert isinstance(r_peaks, list), 'Output is not a list' assert isinstance(c_peaks, list), 'Output is not a list' assert len(r_peaks) == n_rows, 'Wrong number of sample rows detected' assert len(c_peaks) == n_columns, 'Wrong number of sample columns detected' return