Exemple #1
0
def write_map(filename, m, nest=False, dtype=npy.float32, fits_IDL=True):
    """Writes an healpix map into an healpix file.

    Input:
      - filename: the fits file name
      - m: the map to write. Possibly a sequence of 3 maps of same size.
           They will be considered as I, Q, U maps
      - nest=False: ordering scheme
      - fits_IDL = true reshapes columns in rows of 1024, otherwise all the data will 
        go in one column
    """
    if not hasattr(m, "__len__"):
        raise TypeError("The map must be a sequence")
    # check the dtype and convert it
    fitsformat = getformat(dtype)
    # print 'format to use: "%s"'%fitsformat
    if hasattr(m[0], "__len__"):
        # we should have three maps
        if len(m) != 3 or len(m[1]) != len(m[0]) or len(m[2]) != len(m[0]):
            raise ValueError("You should give 3 maps of same size " "for polarisation...")
        nside = pixelfunc.npix2nside(len(m[0]))
        if nside < 0:
            raise ValueError("Invalid healpix map : wrong number of pixel")
        cols = []
        colnames = ["I_STOKES", "Q_STOKES", "U_STOKES"]
        for cn, mm in zip(colnames, m):
            if len(mm) > 1024 and fits_IDL:
                # I need an ndarray, for reshape:
                mm2 = npy.asarray(mm)
                cols.append(pyf.Column(name=cn, format="1024%s" % fitsformat, array=mm2.reshape(mm2.size / 1024, 1024)))
            else:
                cols.append(pyf.Column(name=cn, format="%s" % fitsformat, array=mm))
    else:  # we write only one map
        nside = pixelfunc.npix2nside(len(m))
        if nside < 0:
            raise ValueError("Invalid healpix map : wrong number of pixel")
        if m.size > 1024 and fits_IDL:
            cols = [pyf.Column(name="I_STOKES", format="1024%s" % fitsformat, array=m.reshape(m.size / 1024, 1024))]
        else:
            cols = [pyf.Column(name="I_STOKES", format="%s" % fitsformat, array=m)]

    coldefs = pyf.ColDefs(cols)
    tbhdu = pyf.new_table(coldefs)
    # add needed keywords
    tbhdu.header.update("PIXTYPE", "HEALPIX", "HEALPIX pixelisation")
    if nest:
        ordering = "NESTED"
    else:
        ordering = "RING"
    tbhdu.header.update("ORDERING", ordering, "Pixel ordering scheme, either RING or NESTED")
    tbhdu.header.update("EXTNAME", "xtension", "name of this binary table extension")
    tbhdu.header.update("NSIDE", nside, "Resolution parameter of HEALPIX")
    tbhdu.header.update("FIRSTPIX", 0, "First pixel # (0 based)")
    tbhdu.header.update("LASTPIX", pixelfunc.nside2npix(nside) - 1, "Last pixel # (0 based)")
    tbhdu.header.update("INDXSCHM", "IMPLICIT", "Indexing: IMPLICIT or EXPLICIT")
    tbhdu.writeto(filename, clobber=True)
Exemple #2
0
def write_map(filename,m,nest=False,dtype=np.float32,fits_IDL=True,coord=None):
    """Writes an healpix map into an healpix file.

    Parameters
    ----------
    filename : str
      the fits file name
    m : array or sequence of 3 arrays
      the map to write. Possibly a sequence of 3 maps of same size.
      They will be considered as I, Q, U maps
    nest : bool, optional
      If False, ordering scheme is NESTED, otherwise, it is RING. Default: RING.
    fits_IDL : bool, optional
      If True, reshapes columns in rows of 1024, otherwise all the data will 
      go in one column. Default: True
    coord : str
      The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'Q' for Equatorial  
    """
    if not hasattr(m, '__len__'):
        raise TypeError('The map must be a sequence')
    # check the dtype and convert it
    fitsformat = getformat(dtype)
    #print 'format to use: "%s"'%fitsformat
    if hasattr(m[0], '__len__'):
        # we should have three maps
        if len(m) != 3 or len(m[1]) != len(m[0]) or len(m[2]) != len(m[0]):
            raise ValueError("You should give 3 maps of same size "
                             "for polarisation...")
        nside = pixelfunc.npix2nside(len(m[0]))
        if nside < 0:
            raise ValueError('Invalid healpix map : wrong number of pixel')
        cols=[]
        colnames=['I_STOKES','Q_STOKES','U_STOKES']
        for cn,mm in zip(colnames,m):
            if len(mm) > 1024 and fits_IDL:
                # I need an ndarray, for reshape:
                mm2 = np.asarray(mm)
                cols.append(pf.Column(name=cn,
                                       format='1024%s'%fitsformat,
                                       array=mm2.reshape(mm2.size/1024,1024)))
            else:
                cols.append(pf.Column(name=cn,
                                       format='%s'%fitsformat,
                                       array=mm))
    else: # we write only one map
        nside = pixelfunc.npix2nside(len(m))
        if nside < 0:
            raise ValueError('Invalid healpix map : wrong number of pixel')
        if m.size > 1024 and fits_IDL:
            cols = [pf.Column(name='I_STOKES',
                               format='1024%s'%fitsformat,
                               array=m.reshape(m.size/1024,1024))]
        else:
            cols = [pf.Column(name='I_STOKES',
                               format='%s'%fitsformat,
                               array=m)]
            
    tbhdu = pf.new_table(cols)
    # add needed keywords
    tbhdu.header.update('PIXTYPE','HEALPIX','HEALPIX pixelisation')
    if nest: ordering = 'NESTED'
    else:    ordering = 'RING'
    tbhdu.header.update('ORDERING',ordering,
                        'Pixel ordering scheme, either RING or NESTED')
    if coord:
        tbhdu.header.update('COORD',coord,
                            'Ecliptic, Galactic or eQuatorial')
    tbhdu.header.update('EXTNAME','xtension',
                        'name of this binary table extension')
    tbhdu.header.update('NSIDE',nside,'Resolution parameter of HEALPIX')
    tbhdu.header.update('FIRSTPIX', 0, 'First pixel # (0 based)')
    tbhdu.header.update('LASTPIX',pixelfunc.nside2npix(nside)-1,
                        'Last pixel # (0 based)')
    tbhdu.header.update('INDXSCHM','IMPLICIT',
                        'Indexing: IMPLICIT or EXPLICIT')
    tbhdu.writeto(filename,clobber=True)
Exemple #3
0
def read_map(filename,field=0,dtype=np.float64,nest=False,hdu=1,h=False,
             verbose=False):
    """Read an healpix map from a fits file.

    Parameters
    ----------
    filename : str
      the fits file name
    field : int or tuple of int, optional
      The column to read. Default: 0.
      By convention 0 is temperature, 1 is Q, 2 is U.
      Field can be a tuple to read multiple columns (0,1,2)
    dtype : data type, optional
      Force the conversion to some type. Default: np.float64
    nest : bool, optional
      If True return the map in NEST ordering, otherwise in RING ordering; 
      use fits keyword ORDERING to decide whether conversion is needed or not
      If None, no conversion is performed.
    hdu : int, optional
      the header number to look at (start at 0)
    h : boo, optional
      If True, return also the header. Default: False.
    verbose : bool, optional
      If True, print a number of diagnostic messages

    Returns
    -------
    m | (m0, m1, ...) [, header] : array or a tuple of arrays, optionally with header appended
      The map(s) read from the file, and the header if *h* is True.
    """
    hdulist=pf.open(filename)
    #print hdulist[1].header
    nside = hdulist[hdu].header.get('NSIDE')
    if nside is None:
        warnings.warn("No NSIDE in the header file : will use length of array",
                      HealpixFitsWarning)
    else:
        nside = int(nside)
    if verbose: print 'NSIDE = %d'%nside

    if not pixelfunc.isnsideok(nside):
        raise ValueError('Wrong nside parameter.')
    ordering = hdulist[hdu].header.get('ORDERING','UNDEF').strip()
    if ordering == 'UNDEF':
        ordering = (nest and 'NESTED' or 'RING')
        warnings.warn("No ORDERING keyword in header file : "
                      "assume %s"%ordering)
    if verbose: print 'ORDERING = %s in fits file'%ordering

    sz=pixelfunc.nside2npix(nside)
    if not hasattr(field, '__len__'):
        field = (field,)
    ret = []

    for ff in field:
        m=hdulist[hdu].data.field(ff).astype(dtype).ravel()
        if (not pixelfunc.isnpixok(m.size) or (sz>0 and sz != m.size)) and verbose:
            print 'nside=%d, sz=%d, m.size=%d'%(nside,sz,m.size)
            raise ValueError('Wrong nside parameter.')
        if not nest is None: # no conversion with None
            if nest and ordering == 'RING':
                idx = pixelfunc.nest2ring(nside,np.arange(m.size,dtype=np.int32))
                m = m[idx]
                if verbose: print 'Ordering converted to NEST'
            elif (not nest) and ordering == 'NESTED':
                idx = pixelfunc.ring2nest(nside,np.arange(m.size,dtype=np.int32))
                m = m[idx]
                if verbose: print 'Ordering converted to RING'
        try:
            m[pixelfunc.mask_bad(m)] = UNSEEN
        except OverflowError, e:
            pass
        ret.append(m)
def in_ring(nside, iz, phi0, dphi, nest=False):
    """Compute the list of pixels in ring number iz in phi interval [phi0,phi0+dphi]

	Input:
	 - nside: a power of 2
	 - iz: ring number
	 - phi0: the starting longitude
	 - dphi: interval of longitude
	Keyword:
	 - nested: if True, return pixel number in nested scheme. Default: False (RING)
	Return:
	 - list of pixel numbers
	"""
    from numpy import pi, arange, concatenate, hstack, fabs, round
    from pixelfunc import nside2npix, ring2nest

    npix = nside2npix(nside)
    take_all = 0
    to_top = 0
    twopi = 2.0 * pi
    ncap = 2 * nside * (nside - 1)
    listir = -1
    nir = 0

    phi_low = (phi0 - dphi) % twopi
    if (phi_low < 0): phi_low = phi_low + twopi

    phi_hi = (phi0 + dphi) % twopi

    if (phi_hi < 0): phi_hi = phi_hi + twopi
    if (fabs(dphi - pi) < 1e-6): take_all = 1

    # equatorial region
    if ((iz >= nside) & (iz <= 3 * nside)):
        ir = iz - nside + 1
        ipix1 = ncap + 4 * nside * (ir - 1)
        ipix2 = ipix1 + 4 * nside - 1
        kshift = ir % 2
        nr = nside * 4
    else:
        if (iz < nside):
            ir = iz
            ipix1 = 2 * ir * (ir - 1)
            ipix2 = ipix1 + 4 * ir - 1
        else:
            ir = 4 * nside - iz
            ipix1 = npix - 2 * ir * (ir + 1)
            ipix2 = ipix1 + 4 * ir - 1
        nr = ir * 4
        kshift = 1

    if (take_all == 1):
        nir = ipix2 - ipix1 + 1
        listir = arange(ipix1, ipix2 + 1, 1)
    if (take_all == 0):
        shift = kshift * .5
        ip_low = int(round(nr * phi_low / twopi - shift))
        ip_hi = int(round(nr * phi_hi / twopi - shift))
        ip_low = ip_low % nr
        ip_hi = ip_hi % nr

        if (ip_low > ip_hi): to_top = 1

        ip_low = ip_low + ipix1
        ip_hi = ip_hi + ipix1

        if (to_top == 1):
            nir1 = ipix2 - ip_low + 1
            nir2 = ip_hi - ipix1 + 1
            nir = nir1 + nir2
            if ((nir1 > 0) & (nir2 > 0)):
                #listir   = concatenate(arange(0,nir2,1)+ipix1, arange(0,nir1,1)+ip_low)
                list1 = arange(0, nir1, 1) + ip_low
                list2 = arange(0, nir2, 1) + ipix1
                listir = concatenate((list1, list2))
            else:
                if (nir1 == 0): listir = arange(0, nir2, 1) + ipix1
                if (nir2 == 0): listir = arange(0, nir1, 1) + ip_low
        else:
            nir = ip_hi - ip_low + 1
            listir = arange(0, nir, 1) + ip_low

    if (nest): listir = ring2nest(nside, listir)

    return listir
Exemple #5
0
def read_map(filename, field=0, dtype=npy.float64, nest=False, hdu=1, h=False, verbose=False):
    """Read an healpix map from a fits file.

    Input:
      - filename: the fits file name
    Parameters:
      - field: the column to read Default: 0
               by convention 0 is temperature, 1 is Q, 2 is U
               field can be a tuple to read multiple columns (0,1,2)
      - dtype: force the conversion to some type. Default: npy.float64
      - nest=False: if True return the map in NEST ordering, otherwise in RING ordering; 
                    use fits keyword ORDERING to decide whether conversion is needed or not
                    if None, no conversion is performed
      - hdu=1: the header number to look at (start at 0)
      - h=False: if True, return also the header
      - verbose=False: if True, print a number of diagnostic messages
    Return:
      - an array, a tuple of array, possibly with the header at the end if h
        is True
    """
    hdulist = pyf.open(filename)
    # print hdulist[1].header
    nside = int(hdulist[hdu].header.get("NSIDE"))
    if nside is None:
        warnings.warn("No NSIDE in the header file : will use length of array", HealpixFitsWarning)
    if verbose:
        print "NSIDE = %d" % nside

    if not pixelfunc.isnsideok(nside):
        raise ValueError("Wrong nside parameter.")
    ordering = hdulist[hdu].header.get("ORDERING", "UNDEF").strip()
    if ordering == "UNDEF":
        ordering = nest and "NESTED" or "RING"
        warnings.warn("No ORDERING keyword in header file : " "assume %s" % ordering)
    if verbose:
        print "ORDERING = %s in fits file" % ordering

    sz = pixelfunc.nside2npix(nside)
    if not hasattr(field, "__len__"):
        field = (field,)
    ret = []

    for ff in field:
        m = hdulist[hdu].data.field(ff).astype(dtype).ravel()
        if (not pixelfunc.isnpixok(m.size) or (sz > 0 and sz != m.size)) and verbose:
            print "nside=%d, sz=%d, m.size=%d" % (nside, sz, m.size)
            raise ValueError("Wrong nside parameter.")
        if nest != None:  # no conversion with None
            if nest and ordering == "RING":
                idx = pixelfunc.nest2ring(nside, npy.arange(m.size, dtype=npy.int32))
                m = m[idx]
                if verbose:
                    print "Ordering converted to NEST"
            elif (not nest) and ordering == "NESTED":
                idx = pixelfunc.ring2nest(nside, npy.arange(m.size, dtype=npy.int32))
                m = m[idx]
                if verbose:
                    print "Ordering converted to RING"
        try:
            m[pixelfunc.mask_bad(m)] = UNSEEN
        except OverflowError, e:
            pass
        ret.append(m)
def in_ring(nside,iz,phi0,dphi,nest=False):
	"""Compute the list of pixels in ring number iz in phi interval [phi0,phi0+dphi]

	Input:
	 - nside: a power of 2
	 - iz: ring number
	 - phi0: the starting longitude
	 - dphi: interval of longitude
	Keyword:
	 - nested: if True, return pixel number in nested scheme. Default: False (RING)
	Return:
	 - list of pixel numbers
	"""
	from numpy import pi,arange,concatenate,hstack,fabs,round
	from pixelfunc import nside2npix,ring2nest
	
	npix = nside2npix(nside)
	take_all = 0
	to_top = 0
	twopi = 2.0 * pi
	ncap  = 2*nside*(nside-1)
	listir = -1
	nir = 0

	phi_low = (phi0 - dphi) % twopi
	if (phi_low < 0): phi_low = phi_low + twopi
	
	phi_hi  = (phi0 + dphi) % twopi
	
	if (phi_hi < 0): phi_hi  = phi_hi  + twopi
	if (fabs(dphi-pi) < 1e-6): take_all = 1

	
	# equatorial region
	if ((iz >= nside) & (iz <= 3*nside)):
    		ir = iz - nside + 1
    		ipix1 = ncap + 4*nside*(ir-1)
    		ipix2 = ipix1 + 4*nside - 1
    		kshift = ir % 2
    		nr = nside*4
	else:
    		if (iz < nside):
        		ir = iz
        		ipix1 = 2*ir*(ir-1)
        		ipix2 = ipix1 + 4*ir - 1
		else:
        		ir = 4*nside - iz
        		ipix1 = npix - 2*ir*(ir+1)
        		ipix2 = ipix1 + 4*ir - 1
    		nr = ir*4
    		kshift = 1

	if (take_all == 1):
    		nir    = ipix2 - ipix1 + 1
		listir = arange(ipix1,ipix2+1,1)
	if (take_all == 0):
		shift = kshift * .5
    		ip_low = int(round (nr * phi_low / twopi - shift))
    		ip_hi  = int(round(nr * phi_hi  / twopi - shift))
    		ip_low = ip_low % nr     
    		ip_hi  = ip_hi  % nr      

		if (ip_low > ip_hi): to_top = 1
		
		ip_low = ip_low + ipix1
		ip_hi  = ip_hi  + ipix1
		

		if (to_top == 1):
		    	nir1 = ipix2 - ip_low + 1
    			nir2 = ip_hi - ipix1  + 1
    			nir  = nir1 + nir2
 			if ((nir1 > 0) & (nir2 > 0)):
        			#listir   = concatenate(arange(0,nir2,1)+ipix1, arange(0,nir1,1)+ip_low)
				list1 = arange(0,nir1,1)+ip_low
				list2 = arange(0,nir2,1)+ipix1
				listir = concatenate((list1,list2))
			else:
        			if (nir1 == 0) : listir = arange(0,nir2,1)+ipix1
				if (nir2 == 0) : listir = arange(0,nir1,1)+ip_low
      		else:
			nir = ip_hi - ip_low + 1
			listir = arange(0,nir,1)+ip_low  

	if (nest): listir = ring2nest(nside,listir)

	return listir
def query_disc(nside, v0, radius, nest=False, deg=True):
    """Return the list of pixels within angle 'radius' from vector direction 'v0'

	Input:
	 - nside: a power of 2
	 - v0: the vector describing the direction of the center of the disc
	 - radius: the opening angle of the disc
	Keywords:
	 - nest: if True, pixel returned in nested scheme. Default: False (RING)
	 - deg: if False, radius angle expected in radian. Default: True (DEGREE)
	Return:
	 - list of pixel (as a numpy array)
	"""
    # assumes input in degrees

    from numpy import sqrt, sin, cos, pi, array, fabs, arccos, arcsin, size, empty, concatenate, arctan2, asarray
    from pixelfunc import vec2pix, nside2npix

    npix = nside2npix(nside)

    ang_conv = 1.0
    if (deg): ang_conv = pi / 180.0

    cosang = cos(radius * ang_conv)

    # radius in radians
    radius_eff = radius * ang_conv

    v0 = asarray(v0)
    v0 /= sqrt((v0**2).sum())
    x0, y0, z0 = v0
    a = x0 * x0 + y0 * y0

    phi0 = 0.0
    if ((x0 != 0.0) | (y0 != 0.0)): phi0 = arctan2(y0, x0)

    cosphi0 = cos(phi0)

    rlat0 = arcsin(z0)
    rlat1 = rlat0 + radius_eff
    rlat2 = rlat0 - radius_eff

    if (rlat1 >= pi / 2.0): zmax = 1.0
    else: zmax = sin(rlat1)

    irmin = max(ring_num(nside, zmax) - 1, 1)

    if (rlat2 <= -pi / 2.0): zmin = -1.0
    else: zmin = sin(rlat2)

    irmax = min(ring_num(nside, zmin) + 1, 4 * nside - 1)

    #first = 1
    work = [[]]
    for iz in xrange(irmin, irmax + 1):
        skip = 0
        z = ring2z(nside, iz)
        b = cosang - z * z0
        c = 1.0 - z * z
        cosdphi = b / sqrt(a * c)
        if ((x0 == 0) & (y0 == 0)):
            cosdphi = -1.0
            dphi = pi
        if (fabs(cosdphi) <= 1):
            dphi = arccos(cosdphi)
        else:
            if (cosphi0 < cosdphi):
                skip = 1
            dphi = pi
        if (skip == 0):
            listir = in_ring(nside, iz, phi0, dphi, nest=nest)
            nir = size(listir)
            if (nir > 0):
                work.append(listir)

    if len(work) > 1:
        work = concatenate(work[1:])
    else:
        work = asarray([], dtype=int)

    return work
def query_disc(nside,v0,radius,nest=False,deg=True):
	"""Return the list of pixels within angle 'radius' from vector direction 'v0'

	Input:
	 - nside: a power of 2
	 - v0: the vector describing the direction of the center of the disc
	 - radius: the opening angle of the disc
	Keywords:
	 - nest: if True, pixel returned in nested scheme. Default: False (RING)
	 - deg: if False, radius angle expected in radian. Default: True (DEGREE)
	Return:
	 - list of pixel (as a numpy array)
	"""
	# assumes input in degrees
	
	from numpy import sqrt,sin,cos,pi,array,fabs,arccos,arcsin,size,empty,concatenate,arctan2,asarray
	from pixelfunc import vec2pix,nside2npix
	
	npix = nside2npix(nside)
	
	ang_conv = 1.0
	if (deg): ang_conv = pi/180.0
	
	cosang = cos(radius*ang_conv)

	# radius in radians
	radius_eff = radius * ang_conv

	v0 = asarray(v0)
	v0 /= sqrt((v0**2).sum())
	x0,y0,z0 = v0
	a = x0*x0 + y0*y0
	
	phi0 = 0.0
	if ((x0!= 0.0)|(y0!=0.0)): phi0 = arctan2(y0, x0)  

	cosphi0 = cos(phi0)

	rlat0 = arcsin(z0)
	rlat1 = rlat0 + radius_eff
	rlat2 = rlat0 - radius_eff

	if (rlat1 >= pi/2.0): zmax = 1.0 
	else                : zmax = sin(rlat1)
	
	irmin = max(ring_num(nside,zmax) - 1,1)

	if (rlat2 <= -pi/2.0): zmin = -1.0 
	else                 : zmin = sin(rlat2)
	
	irmax = min(ring_num(nside,zmin) + 1,4*nside-1)
	
	#first = 1
        work = [[]]
	for iz in xrange(irmin,irmax+1):
		skip = 0
		z = ring2z(nside,iz)
		b = cosang - z*z0
		c = 1.0 - z*z
		cosdphi = b/sqrt(a*c)
		if ((x0 == 0)&(y0==0)):
			cosdphi = -1.0
			dphi = pi
		if (fabs(cosdphi) <= 1): 
                        dphi = arccos(cosdphi)
		else: 
			if (cosphi0 < cosdphi): 
                                skip = 1
			dphi = pi
		if (skip == 0):
	    		listir = in_ring(nside, iz, phi0, dphi,nest=nest)
			nir = size(listir)
			if (nir>0):
                                work.append(listir)

	if len(work) > 1:  
		work = concatenate(work[1:])
	else:    
		work = asarray([], dtype=int)

	return work
Exemple #9
0
def write_map(filename,m,nest=False,dtype=np.float32,fits_IDL=True,coord=None,column_names=None):
    """Writes an healpix map into an healpix file.

    Parameters
    ----------
    filename : str
      the fits file name
    m : array or sequence of 3 arrays
      the map to write. Possibly a sequence of 3 maps of same size.
      They will be considered as I, Q, U maps. 
      Supports masked maps, see the `ma` function.
    nest : bool, optional
      If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING.
      The map ordering is not modified by this function, the input map array
      should already be in the desired ordering (run `ud_grade` beforehand).
    fits_IDL : bool, optional
      If True, reshapes columns in rows of 1024, otherwise all the data will 
      go in one column. Default: True
    coord : str
      The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for
      Celestial (equatorial)
    column_names : str or list
      Column name or list of column names, if None we use:
      I_STOKES for 1 component,
      I/Q/U_STOKES for 3 components,
      II, IQ, IU, QQ, QU, UU for 6 components,
      COLUMN_0, COLUMN_1... otherwise
    """
    if not hasattr(m, '__len__'):
        raise TypeError('The map must be a sequence')
    # check the dtype and convert it
    fitsformat = getformat(dtype)

    m = pixelfunc.ma_to_array(m)
    if pixelfunc.maptype(m) == 0: # a single map is converted to a list
        m = [m]

    if column_names is None:
        column_names = standard_column_names.get(len(m), ["COLUMN_%d" % n for n in range(len(m))])
    else:
        assert len(column_names) == len(m), "Length column_names != number of maps"

    # maps must have same length
    assert len(set(map(len, m))) == 1, "Maps must have same length"
    nside = pixelfunc.npix2nside(len(m[0]))

    if nside < 0:
        raise ValueError('Invalid healpix map : wrong number of pixel')

    cols=[]
    for cn, mm in zip(column_names, m):
        if len(mm) > 1024 and fits_IDL:
            # I need an ndarray, for reshape:
            mm2 = np.asarray(mm)
            cols.append(pf.Column(name=cn,
                                   format='1024%s' % fitsformat,
                                   array=mm2.reshape(mm2.size/1024,1024)))
        else:
            cols.append(pf.Column(name=cn,
                                   format='%s' % fitsformat,
                                   array=mm))
            
    tbhdu = pf.new_table(cols)
    # add needed keywords
    tbhdu.header.update('PIXTYPE','HEALPIX','HEALPIX pixelisation')
    if nest: ordering = 'NESTED'
    else:    ordering = 'RING'
    tbhdu.header.update('ORDERING',ordering,
                        'Pixel ordering scheme, either RING or NESTED')
    if coord:
        tbhdu.header.update('COORDSYS',coord,
                            'Ecliptic, Galactic or Celestial (equatorial)')
    tbhdu.header.update('EXTNAME','xtension',
                        'name of this binary table extension')
    tbhdu.header.update('NSIDE',nside,'Resolution parameter of HEALPIX')
    tbhdu.header.update('FIRSTPIX', 0, 'First pixel # (0 based)')
    tbhdu.header.update('LASTPIX',pixelfunc.nside2npix(nside)-1,
                        'Last pixel # (0 based)')
    tbhdu.header.update('INDXSCHM','IMPLICIT',
                        'Indexing: IMPLICIT or EXPLICIT')
    tbhdu.writeto(filename,clobber=True)
Exemple #10
0
def read_map(filename,
             field=0,
             dtype=npy.float64,
             nest=False,
             hdu=1,
             h=False,
             verbose=False):
    """Read an healpix map from a fits file.

    Input:
      - filename: the fits file name
    Parameters:
      - field: the column to read Default: 0
               by convention 0 is temperature, 1 is Q, 2 is U
               field can be a tuple to read multiple columns (0,1,2)
      - dtype: force the conversion to some type. Default: npy.float64
      - nest=False: if True return the map in NEST ordering, otherwise in RING ordering; 
                    use fits keyword ORDERING to decide whether conversion is needed or not
                    if None, no conversion is performed
      - hdu=1: the header number to look at (start at 0)
      - h=False: if True, return also the header
      - verbose=False: if True, print a number of diagnostic messages
    Return:
      - an array, a tuple of array, possibly with the header at the end if h
        is True
    """
    hdulist = pyf.open(filename)
    #print hdulist[1].header
    nside = int(hdulist[hdu].header.get('NSIDE'))
    if nside is None:
        warnings.warn("No NSIDE in the header file : will use length of array",
                      HealpixFitsWarning)
    if verbose: print 'NSIDE = %d' % nside

    if not pixelfunc.isnsideok(nside):
        raise ValueError('Wrong nside parameter.')
    ordering = hdulist[hdu].header.get('ORDERING', 'UNDEF').strip()
    if ordering == 'UNDEF':
        ordering = (nest and 'NESTED' or 'RING')
        warnings.warn("No ORDERING keyword in header file : "
                      "assume %s" % ordering)
    if verbose: print 'ORDERING = %s in fits file' % ordering

    sz = pixelfunc.nside2npix(nside)
    if not hasattr(field, '__len__'):
        field = (field, )
    ret = []

    for ff in field:
        m = hdulist[hdu].data.field(ff).astype(dtype).ravel()
        if (not pixelfunc.isnpixok(m.size) or
            (sz > 0 and sz != m.size)) and verbose:
            print 'nside=%d, sz=%d, m.size=%d' % (nside, sz, m.size)
            raise ValueError('Wrong nside parameter.')
        if nest != None:  # no conversion with None
            if nest and ordering == 'RING':
                idx = pixelfunc.nest2ring(nside,
                                          npy.arange(m.size, dtype=npy.int32))
                m = m[idx]
                if verbose: print 'Ordering converted to NEST'
            elif (not nest) and ordering == 'NESTED':
                idx = pixelfunc.ring2nest(nside,
                                          npy.arange(m.size, dtype=npy.int32))
                m = m[idx]
                if verbose: print 'Ordering converted to RING'
        try:
            m[pixelfunc.mask_bad(m)] = UNSEEN
        except OverflowError, e:
            pass
        ret.append(m)
Exemple #11
0
def write_map(filename,m,nest=False,dtype=npy.float32):
    """Writes an healpix map into an healpix file.

    Input:
      - filename: the fits file name
      - m: the map to write. Possibly a sequence of 3 maps of same size.
           They will be considered as I, Q, U maps
      - nest=False: ordering scheme
    """
    if not hasattr(m, '__len__'):
        raise TypeError('The map must be a sequence')
    # check the dtype and convert it
    fitsformat = getformat(dtype)
    #print 'format to use: "%s"'%fitsformat
    if hasattr(m[0], '__len__'):
        # we should have three maps
        if len(m) != 3 or len(m[1]) != len(m[0]) or len(m[2]) != len(m[0]):
            raise ValueError("You should give 3 maps of same size "
                             "for polarisation...")
        nside = pixelfunc.npix2nside(len(m[0]))
        if nside < 0:
            raise ValueError('Invalid healpix map : wrong number of pixel')
        cols=[]
        colnames=['I_STOKES','Q_STOKES','U_STOKES']
        for cn,mm in zip(colnames,m):
            if len(mm) > 1024:
                # I need an ndarray, for reshape:
                mm2 = npy.asarray(mm)
                cols.append(pyf.Column(name=cn,
                                       format='1024%s'%fitsformat,
                                       array=mm2.reshape(mm2.size/1024,1024)))
            else:
                cols.append(pyf.Column(name=cn,
                                       format='%s'%fitsformat,
                                       array=mm))
    else: # we write only one map
        nside = pixelfunc.npix2nside(len(m))
        if nside < 0:
            raise ValueError('Invalid healpix map : wrong number of pixel')
        if m.size > 1024:
            cols = [pyf.Column(name='I_STOKES',
                               format='1024%s'%fitsformat,
                               array=m.reshape(m.size/1024,1024))]
        else:
            cols = [pyf.Column(name='I_STOKES',
                               format='%s'%fitsformat,
                               array=m)]
            
    coldefs=pyf.ColDefs(cols)
    tbhdu = pyf.new_table(coldefs)
    # add needed keywords
    tbhdu.header.update('PIXTYPE','HEALPIX','HEALPIX pixelisation')
    if nest: ordering = 'NESTED'
    else:    ordering = 'RING'
    tbhdu.header.update('ORDERING',ordering,
                        'Pixel ordering scheme, either RING or NESTED')
    tbhdu.header.update('EXTNAME','xtension',
                        'name of this binary table extension')
    tbhdu.header.update('NSIDE',nside,'Resolution parameter of HEALPIX')
    tbhdu.header.update('FIRSTPIX', 0, 'First pixel # (0 based)')
    tbhdu.header.update('LASTPIX',pixelfunc.nside2npix(nside)-1,
                        'Last pixel # (0 based)')
    tbhdu.header.update('INDXSCHM','IMPLICIT',
                        'Indexing: IMPLICIT or EXPLICIT')
    tbhdu.writeto(filename,clobber=True)
Exemple #12
0
def read_map(filename,field=0,dtype=npy.float64,nest=False,hdu=1,h=False):
    """Read an healpix map from a fits file.

    Input:
      - filename: the fits file name
    Parameters:
      - field: the column to read Default: 0
               by convention 0 is temperature, 1 is Q, 2 is U
               field can be a tuple to read multiple columns (0,1,2)
      - dtype: force the conversion to some type. Default: npy.float64
      - nest=False: if True return the map in NEST ordering, otherwise in RING ordering; 
                    use fits keyword ORDERING to decide whether conversion is needed or not
                    if None, no conversion is performed
      - hdu=1: the header number to look at (start at 0)
      - h=False: if True, return also the header
    Return:
      - an array, a tuple of array, possibly with the header at the end if h
        is True
    """
    hdulist=pyf.open(filename)
    #print hdulist[1].header
    nside = int(hdulist[hdu].header.get('NSIDE'))
    if nside is None:
        warnings.warn("No NSIDE in the header file : will use length of array",
                      HealpixFitsWarning)
    print 'NSIDE = %d'%nside
    if not pixelfunc.isnsideok(nside):
        raise ValueError('Wrong nside parameter.')
    ordering = hdulist[hdu].header.get('ORDERING','UNDEF').strip()
    if ordering == 'UNDEF':
        ordering = (nest and 'NESTED' or 'RING')
        warnings.warn("No ORDERING keyword in header file : "
                      "assume %s"%ordering)
    print 'ORDERING = %s in fits file'%ordering
    sz=pixelfunc.nside2npix(nside)
    if not hasattr(field, '__len__'):
        field = (field,)
    ret = []

    for ff in field:
        m=hdulist[hdu].data.field(ff).astype(dtype).ravel()
        if not pixelfunc.isnpixok(m.size) or (sz>0 and sz != m.size):
            print 'nside=%d, sz=%d, m.size=%d'%(nside,sz,m.size)
            raise ValueError('Wrong nside parameter.')
        if nest != None: # no conversion with None
            if nest and ordering == 'RING':
                idx = pixelfunc.nest2ring(nside,npy.arange(m.size,dtype=npy.int32))
                m = m[idx]
                print 'Ordering converted to NEST'
            elif (not nest) and ordering == 'NESTED':
                idx = pixelfunc.ring2nest(nside,npy.arange(m.size,dtype=npy.int32))
                m = m[idx]
                print 'Ordering converted to RING'
        m[m<-1.637e30] = UNSEEN
        ret.append(m)
    
    if len(ret) == 1:
        if h:
            return ret[0],hdulist[hdu].header.items()
        else:
            return ret[0]
    else:
        if h:
            ret.append(hdulist[hdu].header.items())
            return tuple(ret)
        else:
            return tuple(ret)