def test_dataloader():
    seed_everything()

    X = np.random.rand(5, 2)
    y = np.random.rand(5)
    x_val = np.random.rand(2, 2)
    y_val = np.random.rand(2)
    x_test = np.random.rand(1, 2)
    y_test = np.random.rand(1)

    shuffled_X, shuffled_y = sk_shuffle(X, y, random_state=1234)

    # -----------------------------
    # train
    # -----------------------------
    loaders = SklearnDataModule(X=X, y=y, val_split=0.2, test_split=0.2, random_state=1234, drop_last=True)
    train_loader = loaders.train_dataloader()
    val_loader = loaders.val_dataloader()
    test_loader = loaders.test_dataloader()
    assert np.all(train_loader.dataset.X == shuffled_X[2:])
    assert np.all(val_loader.dataset.X == shuffled_X[0])
    assert np.all(test_loader.dataset.X == shuffled_X[1])
    assert np.all(train_loader.dataset.Y == shuffled_y[2:])

    # -----------------------------
    # train + val
    # -----------------------------
    loaders = SklearnDataModule(X=X, y=y, x_val=x_val, y_val=y_val, test_split=0.2, random_state=1234, drop_last=True)
    train_loader = loaders.train_dataloader()
    val_loader = loaders.val_dataloader()
    test_loader = loaders.test_dataloader()
    assert np.all(train_loader.dataset.X == shuffled_X[1:])
    assert np.all(val_loader.dataset.X == x_val)
    assert np.all(test_loader.dataset.X == shuffled_X[0])

    # -----------------------------
    # train + test
    # -----------------------------
    loaders = SklearnDataModule(
        X=X, y=y, x_test=x_test, y_test=y_test, val_split=0.2, random_state=1234, drop_last=True
    )
    train_loader = loaders.train_dataloader()
    val_loader = loaders.val_dataloader()
    test_loader = loaders.test_dataloader()
    assert np.all(train_loader.dataset.X == shuffled_X[1:])
    assert np.all(val_loader.dataset.X == shuffled_X[0])
    assert np.all(test_loader.dataset.X == x_test)

    # -----------------------------
    # train + val + test
    # -----------------------------
    loaders = SklearnDataModule(X, y, x_val, y_val, x_test, y_test, random_state=1234, drop_last=True)
    train_loader = loaders.train_dataloader()
    val_loader = loaders.val_dataloader()
    test_loader = loaders.test_dataloader()
    assert np.all(train_loader.dataset.X == shuffled_X)
    assert np.all(val_loader.dataset.X == x_val)
    assert np.all(test_loader.dataset.X == x_test)
Exemple #2
0
def cli_main():
    from warnings import warn

    pl.seed_everything(1234)

    # Example: Iris dataset in Sklearn (4 features, 3 class labels)
    try:
        from sklearn.datasets import load_iris
    except ImportError:
        warn('You want to use `sklearn` which is not installed yet,'  # pragma: no-cover
             ' install it with `pip install sklearn`.')

    X, y = load_iris(return_X_y=True)
    loaders = SklearnDataModule(X, y)

    # args
    parser = ArgumentParser()
    parser = LogisticRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    # model = LogisticRegression(**vars(args))
    model = LogisticRegression(input_dim=4, num_classes=3, l1_strength=0.01, learning_rate=0.01)

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, loaders.train_dataloader(args.batch_size), loaders.val_dataloader(args.batch_size))
def cli_main():
    from pl_bolts.datamodules.sklearn_datamodule import SklearnDataModule

    pl.seed_everything(1234)

    # create dataset
    try:
        from sklearn.datasets import load_boston
    except ModuleNotFoundError as err:
        raise ModuleNotFoundError(  # pragma: no-cover
            'You want to use `sklearn` which is not installed yet, install it with `pip install sklearn`.'
        ) from err

    X, y = load_boston(return_X_y=True)  # these are numpy arrays
    loaders = SklearnDataModule(X, y)

    # args
    parser = ArgumentParser()
    parser = LinearRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    model = LinearRegression(input_dim=13, l1_strength=1, l2_strength=1)
    # model = LinearRegression(**vars(args))

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, loaders.train_dataloader(args.batch_size),
                loaders.val_dataloader(args.batch_size))
Exemple #4
0
def cli_main():
    from pl_bolts.datamodules.sklearn_datamodule import SklearnDataModule
    from pl_bolts.utils import _SKLEARN_AVAILABLE

    pl.seed_everything(1234)

    # create dataset
    if _SKLEARN_AVAILABLE:
        from sklearn.datasets import load_diabetes
    else:  # pragma: no cover
        raise ModuleNotFoundError(
            'You want to use `sklearn` which is not installed yet, install it with `pip install sklearn`.'
        )

    # args
    parser = ArgumentParser()
    parser = LinearRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    model = LinearRegression(input_dim=10, l1_strength=1, l2_strength=1)
    # model = LinearRegression(**vars(args))

    # data
    X, y = load_diabetes(return_X_y=True)  # these are numpy arrays
    loaders = SklearnDataModule(X, y, batch_size=args.batch_size)

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, train_dataloader=loaders.train_dataloader(), val_dataloaders=loaders.val_dataloader())
def cli_main():
    from pl_bolts.datamodules.sklearn_datamodule import SklearnDataModule
    from pl_bolts.utils import _SKLEARN_AVAILABLE

    pl.seed_everything(1234)

    # Example: Iris dataset in Sklearn (4 features, 3 class labels)
    if _SKLEARN_AVAILABLE:
        from sklearn.datasets import load_iris
    else:  # pragma: no cover
        raise ModuleNotFoundError(
            'You want to use `sklearn` which is not installed yet, install it with `pip install sklearn`.'
        )

    # args
    parser = ArgumentParser()
    parser = LogisticRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    # model = LogisticRegression(**vars(args))
    model = LogisticRegression(input_dim=4, num_classes=3, l1_strength=0.01, learning_rate=0.01)

    # data
    X, y = load_iris(return_X_y=True)
    loaders = SklearnDataModule(X, y, batch_size=args.batch_size, num_workers=0)

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, train_dataloader=loaders.train_dataloader(), val_dataloaders=loaders.val_dataloader())
Exemple #6
0
def cli_main():
    pl.seed_everything(1234)

    # Example: Iris dataset in Sklearn (4 features, 3 class labels)
    from sklearn.datasets import load_iris
    X, y = load_iris(return_X_y=True)
    loaders = SklearnDataModule(X, y)

    # args
    parser = ArgumentParser()
    parser = LogisticRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    # model = LogisticRegression(**vars(args))
    model = LogisticRegression(input_dim=4, num_classes=3, l1_strength=0.01, learning_rate=0.01)

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, loaders.train_dataloader(args.batch_size), loaders.val_dataloader(args.batch_size))
Exemple #7
0
def cli_main():
    pl.seed_everything(1234)

    # create dataset
    from sklearn.datasets import load_boston
    X, y = load_boston(return_X_y=True)  # these are numpy arrays
    loaders = SklearnDataModule(X, y)

    # args
    parser = ArgumentParser()
    parser = LinearRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    model = LinearRegression(input_dim=13, l1_strength=1, l2_strength=1)
    # model = LinearRegression(**vars(args))

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, loaders.train_dataloader(args.batch_size),
                loaders.val_dataloader(args.batch_size))
        parser.add_argument('--input_dim', type=int, default=None)
        parser.add_argument('--num_classes', type=int, default=None)
        parser.add_argument('--bias', default='store_true')
        parser.add_argument('--batch_size', type=int, default=16)
        return parser


# todo: covert to CLI func and add test
if __name__ == '__main__':  # pragma: no cover
    from argparse import ArgumentParser
    pl.seed_everything(1234)

    # Example: Iris dataset in Sklearn (4 features, 3 class labels)
    from sklearn.datasets import load_iris
    X, y = load_iris(return_X_y=True)
    loaders = SklearnDataModule(X, y)

    # args
    parser = ArgumentParser()
    parser = LogisticRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    # model = LogisticRegression(**vars(args))
    model = LogisticRegression(input_dim=4, num_classes=3, l1_strength=0.01, learning_rate=0.01)

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, loaders.train_dataloader(args.batch_size), loaders.val_dataloader(args.batch_size))
        return parser


# todo: covert to CLI func and add test
if __name__ == '__main__':  # pragma: no cover
    from argparse import ArgumentParser
    pl.seed_everything(1234)

    # Example: Iris dataset in Sklearn (4 features, 3 class labels)
    from sklearn.datasets import load_iris
    X, y = load_iris(return_X_y=True)
    loaders = SklearnDataModule(X, y)

    # args
    parser = ArgumentParser()
    parser = LogisticRegression.add_model_specific_args(parser)
    parser = pl.Trainer.add_argparse_args(parser)
    args = parser.parse_args()

    # model
    # model = LogisticRegression(**vars(args))
    model = LogisticRegression(input_dim=4,
                               num_classes=3,
                               l1_strength=0.01,
                               learning_rate=0.01)

    # train
    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model, loaders.train_dataloader(args.batch_size),
                loaders.val_dataloader(args.batch_size))