def test_fasterrcnn_bbone_train(tmpdir): model = FasterRCNN(backbone="resnet18", fpn=True, pretrained_backbone=True) train_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) valid_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, train_dl, valid_dl)
def test_fasterrcnn_train(tmpdir): model = FasterRCNN() train_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) valid_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model, train_dataloader=train_dl, val_dataloaders=valid_dl)
def test_fasterrcnn_train(tmpdir): model = FasterRCNN(pretrained=False, pretrained_backbone=False) train_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) valid_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) trainer = Trainer(fast_dev_run=True, logger=False, checkpoint_callback=False, default_root_dir=tmpdir) trainer.fit(model, train_dataloader=train_dl, val_dataloaders=valid_dl)
def test_retinanet_backbone_train(tmpdir): model = RetinaNet(backbone="resnet18", fpn=True, pretrained_backbone=False) train_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) valid_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) trainer = Trainer(fast_dev_run=True, logger=False, checkpoint_callback=False, default_root_dir=tmpdir) model = FasterRCNN(backbone="resnet18", fpn=True, pretrained_backbone=False, pretrained=False) train_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) valid_dl = DataLoader(DummyDetectionDataset(), collate_fn=_collate_fn) trainer.fit(model, train_dl, valid_dl)
def test_fasterrcnn(): model = FasterRCNN() image = torch.rand(1, 3, 400, 400) model(image)
def test_fasterrcnn(): model = FasterRCNN(pretrained=False, pretrained_backbone=False) image = torch.rand(1, 3, 224, 224) model(image)