Exemple #1
0
def get_N0_iter(qe_key, nlev_t, nlev_p, beam_fwhm, cls_unl, lmin_ivf, lmax_ivf, itermax, lmax_qlm=None):
    """Iterative lensing-N0 estimate

        Calculates iteratively partially lensed spectra and lensing noise levels.
        This uses the python camb package to get the partially lensed spectra.

        This makes no assumption on response =  1 / noise hence is about twice as slow as it could be in standard cases.

        Args:
            qe_key: QE estimator key
            nlev_t: temperature noise level (in :math:`\mu `K-arcmin)
            nlev_p: polarisation noise level (in :math:`\mu `K-arcmin)
            beam_fwhm: Gaussian beam full width half maximum in arcmin
            cls_unl(dict): unlensed CMB power spectra
            lmin_ivf: minimal CMB multipole used in the QE
            lmax_ivf: maximal CMB multipole used in the QE
            itermax: number of iterations to perform
            lmax_qlm(optional): maximum lensing multipole to consider. Defaults to :math:`2 lmax_ivf`

        Returns
            Array of shape (itermax + 1, lmax_qlm + 1) with all iterated N0s. First entry is standard N0.

    #FIXME: this is requiring the full camb python package for the lensed spectra calc.

     """

    assert qe_key in ['p_p', 'p', 'ptt'], qe_key
    try:
        from camb.correlations import lensed_cls
    except ImportError:
        assert 0, "could not import camb.correlations.lensed_cls"

    def cls2dls(cls):
        """Turns cls dict. into camb cl array format"""
        keys = ['tt', 'ee', 'bb', 'te']
        lmax = np.max([len(cl) for cl in cls.values()]) - 1
        dls = np.zeros((lmax + 1, 4), dtype=float)
        refac = np.arange(lmax + 1) * np.arange(1, lmax + 2, dtype=float) / (2. * np.pi)
        for i, k in enumerate(keys):
            cl = cls.get(k, np.zeros(lmax + 1, dtype=float))
            sli = slice(0, min(len(cl), lmax + 1))
            dls[sli, i] = cl[sli] * refac[sli]
        cldd = np.copy(cls.get('pp', None))
        if cldd is not None:
            cldd *= np.arange(len(cldd)) ** 2 * np.arange(1, len(cldd) + 1, dtype=float) ** 2 /  (2. * np.pi)
        return dls, cldd

    def dls2cls(dls):
        """Inverse operation to cls2dls"""
        assert dls.shape[1] == 4
        lmax = dls.shape[0] - 1
        cls = {}
        refac = 2. * np.pi * utils.cli( np.arange(lmax + 1) * np.arange(1, lmax + 2, dtype=float))
        for i, k in enumerate(['tt', 'ee', 'bb', 'te']):
            cls[k] = dls[:, i] * refac
        return cls
    if lmax_qlm is None:
        lmax_qlm = 2 * lmax_ivf
    lmax_qlm = min(lmax_qlm, 2 * lmax_ivf)
    lmin_ivf = max(lmin_ivf, 1)
    transfi2 = utils.cli(hp.gauss_beam(beam_fwhm / 180. / 60. * np.pi, lmax=lmax_ivf)) ** 2
    llp2 = np.arange(lmax_qlm + 1, dtype=float) ** 2 * np.arange(1, lmax_qlm + 2, dtype=float) ** 2 / (2. * np.pi)
    N0s = []
    N0 = np.inf
    for irr, it in utils.enumerate_progress(range(itermax + 1)):
        dls_unl, cldd = cls2dls(cls_unl)
        clwf = 0. if it == 0 else cldd[:lmax_qlm + 1] * utils.cli(cldd[:lmax_qlm + 1] + llp2 * N0[:lmax_qlm + 1])
        cldd[:lmax_qlm + 1] *= (1. - clwf)
        cls_plen = dls2cls(lensed_cls(dls_unl, cldd))
        cls_ivfs = {}
        if qe_key in ['ptt', 'p_p', 'p']:
            cls_ivfs['tt'] = cls_plen['tt'][:lmax_ivf + 1] + (nlev_t * np.pi / 180. / 60.) ** 2 * transfi2
        if qe_key in ['p_p', 'p']:
            cls_ivfs['ee'] = cls_plen['ee'][:lmax_ivf + 1] + (nlev_p * np.pi / 180. / 60.) ** 2 * transfi2
            cls_ivfs['bb'] = cls_plen['bb'][:lmax_ivf + 1] + (nlev_p * np.pi / 180. / 60.) ** 2 * transfi2
        if qe_key in ['p']:
            cls_ivfs['te'] = np.copy(cls_plen['te'][:lmax_ivf + 1])
        cls_ivfs = utils.cl_inverse(cls_ivfs)
        for cl in cls_ivfs.values():
            cl[:lmin_ivf] *= 0.
        fal = cls_ivfs
        n_gg = get_nhl(qe_key, qe_key, cls_plen, cls_ivfs, lmax_ivf, lmax_ivf, lmax_out=lmax_qlm)[0]
        r_gg = qresp.get_response(qe_key, lmax_ivf, 'p', cls_plen, cls_plen, fal, lmax_qlm=lmax_qlm)[0]
        N0 = n_gg * utils.cli(r_gg ** 2)
        N0s.append(N0)
    return np.array(N0s)
Exemple #2
0
def get_N0_iter(qe_key: str,
                nlev_t: float,
                nlev_p: float,
                beam_fwhm: float,
                cls_unl_fid: dict,
                lmin_ivf,
                lmax_ivf,
                itermax,
                cls_unl_dat=None,
                lmax_qlm=None,
                ret_delcls=False,
                datnoise_cls: dict or None = None,
                unlQE=False,
                version='1'):
    """Iterative lensing-N0 estimate

        Calculates iteratively partially lensed spectra and lensing noise levels.
        This uses the python camb package to get the partially lensed spectra.

        This makes no assumption on response =  1 / noise hence is about twice as slow as it could be in standard cases.

        Args:
            qe_key: QE estimator key
            nlev_t: temperature noise level (in :math:`\mu `K-arcmin)
            nlev_p: polarisation noise level (in :math:`\mu `K-arcmin)
            beam_fwhm: Gaussian beam full width half maximum in arcmin
            cls_unl_fid(dict): unlensed CMB power spectra
            lmin_ivf: minimal CMB multipole used in the QE
            lmax_ivf: maximal CMB multipole used in the QE
            itermax: number of iterations to perform
            lmax_qlm(optional): maximum lensing multipole to consider. Defaults to :math:`2 lmax_ivf`
            ret_delcls(optional): returns the partially delensed CMB cls as well if set
            datnoise_cls(optional): feeds in custom noise spectra to the data. The nlevs and beam only apply to the filtering in this case

        Returns
            Array of shape (itermax + 1, lmax_qlm + 1) with all iterated N0s. First entry is standard N0.


        Note: This assumes the unlensed spectra are known

    #FIXME: this is requiring the full camb python package for the lensed spectra calc.

     """
    assert qe_key in ['p_p', 'p', 'ptt'], qe_key
    try:
        from camb.correlations import lensed_cls
    except ImportError:
        assert 0, "could not import camb.correlations.lensed_cls"

    if lmax_qlm is None:
        lmax_qlm = 2 * lmax_ivf
    lmax_qlm = min(lmax_qlm, 2 * lmax_ivf)
    lmin_ivf = max(lmin_ivf, 1)
    transfi2 = utils.cli(
        hp.gauss_beam(beam_fwhm / 180. / 60. * np.pi, lmax=lmax_ivf))**2
    llp2 = np.arange(lmax_qlm + 1, dtype=float)**2 * np.arange(
        1, lmax_qlm + 2, dtype=float)**2 / (2. * np.pi)
    if datnoise_cls is None:
        datnoise_cls = dict()
        if qe_key in ['ptt', 'p']:
            datnoise_cls['tt'] = (nlev_t * np.pi / 180. / 60.)**2 * transfi2
        if qe_key in ['p_p', 'p']:
            datnoise_cls['ee'] = (nlev_p * np.pi / 180. / 60.)**2 * transfi2
            datnoise_cls['bb'] = (nlev_p * np.pi / 180. / 60.)**2 * transfi2
    N0s_biased = []
    N0s_unbiased = []
    N1s_biased = []
    N1s_unbiased = []
    delcls_fid = []
    delcls_true = []

    N0_unbiased = np.inf
    N1_unbiased = np.inf
    dls_unl_fid, cldd_fid = cls2dls(cls_unl_fid)
    cls_len_fid = dls2cls(lensed_cls(dls_unl_fid, cldd_fid))
    if cls_unl_dat is None:
        cls_unl_dat = cls_unl_fid
        cls_len_true = cls_len_fid
    else:
        dls_unl_true, cldd_true = cls2dls(cls_unl_dat)
        cls_len_true = dls2cls(lensed_cls(dls_unl_true, cldd_true))
    cls_plen_true = cls_len_true
    for irr, it in utils.enumerate_progress(range(itermax + 1)):
        dls_unl_true, cldd_true = cls2dls(cls_unl_dat)
        dls_unl_fid, cldd_fid = cls2dls(cls_unl_fid)
        if it == 0:
            rho_sqd_phi = 0.
        else:
            # The cross-correlation coefficient is identical for the Rfid-biased QE or the rescaled one
            rho_sqd_phi = np.zeros(len(cldd_true))
            rho_sqd_phi[:lmax_qlm + 1] = cldd_true[:lmax_qlm + 1] * utils.cli(
                cldd_true[:lmax_qlm + 1] + llp2 *
                (N0_unbiased[:lmax_qlm + 1] + N1_unbiased[:lmax_qlm + 1]))

        if 'wE' in version:
            assert qe_key in ['p_p']
            if it == 0:
                print('including imperfect knowledge of E in iterations')
            slic = slice(lmin_ivf, lmax_ivf + 1)
            rho_sqd_E = np.zeros(len(dls_unl_true[:, 1]))
            rho_sqd_E[slic] = cls_unl_dat['ee'][slic] * utils.cli(
                cls_plen_true['ee'][slic] + datnoise_cls['ee'][slic])
            dls_unl_fid[:, 1] *= rho_sqd_E
            dls_unl_true[:, 1] *= rho_sqd_E
            cldd_fid *= rho_sqd_phi
            cldd_true *= rho_sqd_phi

            cls_plen_fid_resolved = dls2cls(lensed_cls(dls_unl_fid, cldd_fid))
            cls_plen_true_resolved = dls2cls(
                lensed_cls(dls_unl_true, cldd_true))
            cls_plen_fid = {
                ck: cls_len_fid[ck] - (cls_plen_fid_resolved[ck] -
                                       cls_unl_fid[ck][:len(cls_len_fid[ck])])
                for ck in cls_len_fid.keys()
            }
            cls_plen_true = {
                ck:
                cls_len_true[ck] - (cls_plen_true_resolved[ck] -
                                    cls_unl_dat[ck][:len(cls_len_true[ck])])
                for ck in cls_len_true.keys()
            }

        else:
            cldd_true *= (1. - rho_sqd_phi)  # The true residual lensing spec.
            cldd_fid *= (1. - rho_sqd_phi
                         )  # What I think the residual lensing spec is
            cls_plen_fid = dls2cls(lensed_cls(dls_unl_fid, cldd_fid))
            cls_plen_true = dls2cls(lensed_cls(dls_unl_true, cldd_true))

        cls_filt = cls_plen_fid if not unlQE else cls_unl_fid
        cls_w = cls_plen_fid if not unlQE else cls_unl_fid
        cls_f = cls_plen_true
        fal = {}
        dat_delcls = {}
        if qe_key in ['ptt', 'p']:
            fal['tt'] = cls_filt['tt'][:lmax_ivf + 1] + (
                nlev_t * np.pi / 180. / 60.)**2 * transfi2
            dat_delcls['tt'] = cls_plen_true['tt'][:lmax_ivf +
                                                   1] + datnoise_cls['tt']
        if qe_key in ['p_p', 'p']:
            fal['ee'] = cls_filt['ee'][:lmax_ivf + 1] + (
                nlev_p * np.pi / 180. / 60.)**2 * transfi2
            fal['bb'] = cls_filt['bb'][:lmax_ivf + 1] + (
                nlev_p * np.pi / 180. / 60.)**2 * transfi2
            dat_delcls['ee'] = cls_plen_true['ee'][:lmax_ivf +
                                                   1] + datnoise_cls['ee']
            dat_delcls['bb'] = cls_plen_true['bb'][:lmax_ivf +
                                                   1] + datnoise_cls['bb']
        if qe_key in ['p']:
            fal['te'] = np.copy(cls_filt['te'][:lmax_ivf + 1])
            dat_delcls['te'] = np.copy(cls_plen_true['te'][:lmax_ivf + 1])
        fal = utils.cl_inverse(fal)
        for cl in fal.values():
            cl[:lmin_ivf] *= 0.
        for cl in dat_delcls.values():
            cl[:lmin_ivf] *= 0.
        cls_ivfs_arr = utils.cls_dot([fal, dat_delcls, fal])
        cls_ivfs = dict()
        for i, a in enumerate(['t', 'e', 'b']):
            for j, b in enumerate(['t', 'e', 'b'][i:]):
                if np.any(cls_ivfs_arr[i, j + i]):
                    cls_ivfs[a + b] = cls_ivfs_arr[i, j + i]

        n_gg = get_nhl(qe_key,
                       qe_key,
                       cls_w,
                       cls_ivfs,
                       lmax_ivf,
                       lmax_ivf,
                       lmax_out=lmax_qlm)[0]
        r_gg_true = qresp.get_response(qe_key,
                                       lmax_ivf,
                                       'p',
                                       cls_w,
                                       cls_f,
                                       fal,
                                       lmax_qlm=lmax_qlm)[0]
        r_gg_fid = qresp.get_response(
            qe_key, lmax_ivf, 'p', cls_w, cls_w, fal,
            lmax_qlm=lmax_qlm)[0] if cls_f is not cls_w else r_gg_true
        N0_biased = n_gg * utils.cli(
            r_gg_fid**
            2)  # N0 of possibly biased (by Rtrue / Rfid) QE estimator
        N0_unbiased = n_gg * utils.cli(
            r_gg_true**2
        )  # N0 of QE estimator after rescaling by Rfid / Rtrue to make it unbiased
        N0s_biased.append(N0_biased)
        N0s_unbiased.append(N0_unbiased)
        cls_plen_true['pp'] = cldd_true * utils.cli(
            np.arange(len(cldd_true))**2 *
            np.arange(1, len(cldd_true) + 1, dtype=float)**2 / (2. * np.pi))
        cls_plen_fid['pp'] = cldd_fid * utils.cli(
            np.arange(len(cldd_fid))**2 *
            np.arange(1, len(cldd_fid) + 1, dtype=float)**2 / (2. * np.pi))

        if 'wN1' in version:
            if it == 0: print('Adding n1 in iterations')
            from lensitbiases import n1_fft
            from scipy.interpolate import UnivariateSpline as spl
            lib = n1_fft.n1_fft(fal,
                                cls_w,
                                cls_f,
                                np.copy(cls_plen_true['pp']),
                                lminbox=50,
                                lmaxbox=5000,
                                k2l=None)
            n1_Ls = np.arange(50, lmax_qlm + 1, 50)
            if lmax_qlm not in n1_Ls: n1_Ls = np.append(n1_Ls, lmax_qlm)
            n1 = np.array(
                [lib.get_n1(qe_key, L, do_n1mat=False) for L in n1_Ls])
            N1_biased = spl(n1_Ls,
                            n1_Ls**2 * (n1_Ls * 1. + 1)**2 * n1 /
                            r_gg_fid[n1_Ls]**2,
                            k=2,
                            s=0,
                            ext='zeros')(np.arange(len(N0_unbiased)))
            N1_biased *= utils.cli(
                np.arange(lmax_qlm + 1)**2 *
                np.arange(1, lmax_qlm + 2, dtype=float)**2)
            N1_unbiased = N1_biased * (r_gg_fid * utils.cli(r_gg_true))**2
        else:
            N1_biased = np.zeros(lmax_qlm + 1, dtype=float)
            N1_unbiased = np.zeros(lmax_qlm + 1, dtype=float)

        delcls_fid.append(cls_plen_fid)
        delcls_true.append(cls_plen_true)

        N1s_biased.append(N1_biased)
        N1s_unbiased.append(N1_unbiased)

    return (np.array(N0s_biased),
            np.array(N0s_unbiased)) if not ret_delcls else (
                (np.array(N0s_biased), np.array(N0s_unbiased), delcls_fid,
                 delcls_true))
fal_sepTP =  {'tt': utils.cli(cls_len['tt'][:lmax_ivf + 1] + (nlev_t / 60. / 180. * np.pi) ** 2 / transf ** 2),
              'ee': utils.cli(cls_len['ee'][:lmax_ivf + 1] + (nlev_p / 60. / 180. * np.pi) ** 2 / transf ** 2),
              'bb': utils.cli(cls_len['bb'][:lmax_ivf + 1] + (nlev_p / 60. / 180. * np.pi) ** 2 / transf ** 2)}


cls_ivfs_sepTP = {'tt':fal_sepTP['tt'].copy(),
                  'ee':fal_sepTP['ee'].copy(),
                  'bb':fal_sepTP['bb'].copy(),
                  'te':cls_len['te'][:lmax_ivf + 1] * fal_sepTP['tt'] * fal_sepTP['ee']}
cls_dat = {
    'tt': (cls_len['tt'][:lmax_ivf + 1] + (nlev_t / 60. /180. * np.pi) ** 2 / transf ** 2),
    'ee': (cls_len['ee'][:lmax_ivf + 1] + (nlev_p / 60. /180. * np.pi) ** 2 / transf ** 2),
    'bb': (cls_len['bb'][:lmax_ivf + 1] + (nlev_p / 60. /180. * np.pi) ** 2 / transf ** 2),
    'te':  np.copy(cls_len['te'][:lmax_ivf + 1]) }

fal_jtTP = utils.cl_inverse(cls_dat)
cls_ivfs_jtTP = utils.cl_inverse(cls_dat)

for cls in [fal_sepTP, fal_jtTP, cls_ivfs_sepTP, cls_ivfs_jtTP]:
    for cl in cls.values():
        cl[:max(1, lmin_ivf)] *= 0.

if ksource == 'p':
    w = lambda ell : ell ** 2 *(ell + 1) ** 2 * 1e7 * 0.5 / np.pi
    ylabel = r'$10^7\cdot L^2(L + 1)^2 C_L^{\phi\phi} / 2\pi$'
elif ksource == 'f':
    w = lambda ell : 1.
    ylabel = r'$C_L^{ff}$'
elif ksource == 'a':
    w = lambda ell : 1.
    ylabel = r'$C_L^{\alpha\alpha}$'
Exemple #4
0
def test_w():
    cls_path = os.path.join(
        os.path.dirname(os.path.abspath(plancklens.__file__)), 'data', 'cls')

    lmax_ivf = 500
    lmin_ivf = 100
    nlev_t = 35.
    nlev_p = 35. * np.sqrt(2.)
    beam_fwhm = 6.
    lmax_qlm = lmax_ivf

    for ksource in ['p', 'f']:
        if ksource in ['p', 'f']:
            qe_keys = [ksource + 'tt', ksource + '_p', ksource]
        elif ksource in ['a', 'a_p', 'stt']:
            qe_keys = [ksource]
        else:
            assert 0

        transf = hp.gauss_beam(beam_fwhm / 60. / 180. * np.pi, lmax=lmax_ivf)

        cls_len = utils.camb_clfile(
            os.path.join(cls_path, 'FFP10_wdipole_lensedCls.dat'))
        cls_weight = utils.camb_clfile(
            os.path.join(cls_path, 'FFP10_wdipole_lensedCls.dat'))

        fal_sepTP = {
            'tt':
            utils.cli(cls_len['tt'][:lmax_ivf + 1] +
                      (nlev_t / 60. / 180. * np.pi)**2 / transf**2),
            'ee':
            utils.cli(cls_len['ee'][:lmax_ivf + 1] +
                      (nlev_p / 60. / 180. * np.pi)**2 / transf**2),
            'bb':
            utils.cli(cls_len['bb'][:lmax_ivf + 1] +
                      (nlev_p / 60. / 180. * np.pi)**2 / transf**2)
        }

        cls_ivfs_sepTP = {
            'tt': fal_sepTP['tt'].copy(),
            'ee': fal_sepTP['ee'].copy(),
            'bb': fal_sepTP['bb'].copy(),
            'te':
            cls_len['te'][:lmax_ivf + 1] * fal_sepTP['tt'] * fal_sepTP['ee']
        }
        cls_dat = {
            'tt': (cls_len['tt'][:lmax_ivf + 1] +
                   (nlev_t / 60. / 180. * np.pi)**2 / transf**2),
            'ee': (cls_len['ee'][:lmax_ivf + 1] +
                   (nlev_p / 60. / 180. * np.pi)**2 / transf**2),
            'bb': (cls_len['bb'][:lmax_ivf + 1] +
                   (nlev_p / 60. / 180. * np.pi)**2 / transf**2),
            'te':
            np.copy(cls_len['te'][:lmax_ivf + 1])
        }

        fal_jtTP = utils.cl_inverse(cls_dat)
        cls_ivfs_jtTP = utils.cl_inverse(cls_dat)

        for cls in [fal_sepTP, fal_jtTP, cls_ivfs_sepTP, cls_ivfs_jtTP]:
            for cl in cls.values():
                cl[:max(1, lmin_ivf)] *= 0.

        for qe_key in qe_keys:
            NG, NC, NGC, NCG = nhl.get_nhl(qe_key,
                                           qe_key,
                                           cls_weight,
                                           cls_ivfs_sepTP,
                                           lmax_ivf,
                                           lmax_ivf,
                                           lmax_out=lmax_qlm)
            RG, RC, RGC, RCG = qresp.get_response(qe_key,
                                                  lmax_ivf,
                                                  ksource,
                                                  cls_weight,
                                                  cls_len,
                                                  fal_sepTP,
                                                  lmax_qlm=lmax_qlm)
            if qe_key[1:] in ['tt', '_p']:
                assert np.allclose(NG[1:], RG[1:], rtol=1e-6), qe_key
                assert np.allclose(NC[2:], RC[2:], rtol=1e-6), qe_key
            assert np.all(NCG == 0.) and np.all(NGC == 0.)  # for these keys
            assert np.all(RCG == 0.) and np.all(RGC == 0.)

        NG, NC, NGC, NCG = nhl.get_nhl(ksource,
                                       ksource,
                                       cls_weight,
                                       cls_ivfs_jtTP,
                                       lmax_ivf,
                                       lmax_ivf,
                                       lmax_out=lmax_qlm)
        RG, RC, RGC, RCG = qresp.get_response(ksource,
                                              lmax_ivf,
                                              ksource,
                                              cls_weight,
                                              cls_len,
                                              fal_jtTP,
                                              lmax_qlm=lmax_qlm)
        assert np.allclose(NG[1:], RG[1:], rtol=1e-6), ksource
        assert np.allclose(NC[2:], RC[2:], rtol=1e-6), ksource
        assert np.all(NCG == 0.) and np.all(NGC == 0.)  # for these keys
        assert np.all(RCG == 0.) and np.all(RGC == 0.)
Exemple #5
0
def get_N0(beam_fwhm=1.4,
           nlev_t: float or np.ndarray = 5.,
           nlev_p=None,
           lmax_CMB: dict or int = 3000,
           lmin_CMB=100,
           lmax_out=None,
           cls_len: dict or None = None,
           cls_weight: dict or None = None,
           joint_TP=True,
           ksource='p'):
    r"""Example function to calculates reconstruction noise levels for a bunch of quadratic estimators

        Args:
            beam_fwhm: beam fwhm in arcmin
            nlev_t: T white noise level in uK-arcmin (an array of size lmax_CMB can be passed for scale-dependent noise level)
            nlev_p: P white noise level in uK-arcmin (defaults to root(2) nlevt) (can also be an array)
            lmax_CMB: max. CMB multipole used in the QE (use a dict with 't' 'e' 'b' keys instead of int to set different CMB lmaxes)
            lmin_CMB: min. CMB multipole used in the QE
            lmax_out: max lensing 'L' multipole calculated
            cls_len: CMB spectra entering the sky response to the anisotropy (defaults to FFP10 lensed CMB spectra)
            cls_weight: CMB spectra entering the QE weights (defaults to FFP10 lensed CMB spectra)
            joint_TP: if True include calculation of the N0s for the GMV estimator (incl. joint T and P filtering)
            ksource: anisotropy source to consider (defaults to 'p', lensing)

        Returns:
            N0s array for the lensing gradient and curl modes for  the T-only, P-onl and (G)MV estimators

        Prompted by AL
    """
    if nlev_p is None:
        nlev_p = nlev_t * np.sqrt(2)
    if not isinstance(lmax_CMB, dict):
        lmaxs_CMB = {s: lmax_CMB for s in ['t', 'e', 'b']}
    else:
        lmaxs_CMB = lmax_CMB
        print("Seeing lmax's:")
        for s in lmaxs_CMB.keys():
            print(s + ': ' + str(lmaxs_CMB[s]))

    lmax_ivf = np.max(list(lmaxs_CMB.values()))
    lmin_ivf = lmin_CMB
    lmax_qlm = lmax_out or lmax_ivf
    cls_path = os.path.join(
        os.path.dirname(os.path.abspath(plancklens.__file__)), 'data', 'cls')
    cls_len = cls_len or utils.camb_clfile(
        os.path.join(cls_path, 'FFP10_wdipole_lensedCls.dat'))
    cls_weight = cls_weight or utils.camb_clfile(
        os.path.join(cls_path, 'FFP10_wdipole_lensedCls.dat'))

    # We consider here TT, Pol-only and the GMV comb if joint_TP is set
    qe_keys = [ksource + 'tt', ksource + '_p']
    if not joint_TP:
        qe_keys.append(ksource)

    # Simple white noise model. Can feed here something more fancy if desired
    transf = hp.gauss_beam(beam_fwhm / 60. / 180. * np.pi, lmax=lmax_ivf)
    Noise_L_T = (nlev_t / 60. / 180. * np.pi)**2 / transf**2
    Noise_L_P = (nlev_p / 60. / 180. * np.pi)**2 / transf**2

    # Data power spectra
    cls_dat = {
        'tt': (cls_len['tt'][:lmax_ivf + 1] + Noise_L_T),
        'ee': (cls_len['ee'][:lmax_ivf + 1] + Noise_L_P),
        'bb': (cls_len['bb'][:lmax_ivf + 1] + Noise_L_P),
        'te': np.copy(cls_len['te'][:lmax_ivf + 1])
    }

    for s in cls_dat.keys():
        cls_dat[s][min(lmaxs_CMB[s[0]], lmaxs_CMB[s[1]]) + 1:] *= 0.

    # (C+N)^{-1} filter spectra
    # For independent T and P filtering, this is really just 1/ (C+ N), diagonal in T, E, B space
    fal_sepTP = {spec: utils.cli(cls_dat[spec]) for spec in ['tt', 'ee', 'bb']}
    # Spectra of the inverse-variance filtered maps
    # In general cls_ivfs = fal * dat_cls * fal^t, with a matrix product in T, E, B space
    cls_ivfs_sepTP = utils.cls_dot([fal_sepTP, cls_dat, fal_sepTP],
                                   ret_dict=True)

    # For joint TP filtering, fals is matrix inverse
    fal_jtTP = utils.cl_inverse(cls_dat)
    # since cls_dat = fals, cls_ivfs = fals. If the data spectra do not match the filter, this must be changed:
    cls_ivfs_jtTP = utils.cls_dot([fal_jtTP, cls_dat, fal_jtTP], ret_dict=True)
    for cls in [fal_sepTP, fal_jtTP, cls_ivfs_sepTP, cls_ivfs_jtTP]:
        for cl in cls.values():
            cl[:max(1, lmin_ivf)] *= 0.

    N0s = {}
    N0_curls = {}
    for qe_key in qe_keys:
        # This calculates the unormalized QE gradient (G), curl (C) variances and covariances:
        # (GC and CG is zero for most estimators)
        NG, NC, NGC, NCG = nhl.get_nhl(qe_key,
                                       qe_key,
                                       cls_weight,
                                       cls_ivfs_sepTP,
                                       lmax_ivf,
                                       lmax_ivf,
                                       lmax_out=lmax_qlm)
        # Calculation of the G to G, C to C, G to C and C to G QE responses (again, cross-terms are typically zero)
        RG, RC, RGC, RCG = qresp.get_response(qe_key,
                                              lmax_ivf,
                                              ksource,
                                              cls_weight,
                                              cls_len,
                                              fal_sepTP,
                                              lmax_qlm=lmax_qlm)

        # Gradient and curl noise terms
        N0s[qe_key] = utils.cli(RG**2) * NG
        N0_curls[qe_key] = utils.cli(RC**2) * NC

    if joint_TP:
        NG, NC, NGC, NCG = nhl.get_nhl(ksource,
                                       ksource,
                                       cls_weight,
                                       cls_ivfs_jtTP,
                                       lmax_ivf,
                                       lmax_ivf,
                                       lmax_out=lmax_qlm)
        RG, RC, RGC, RCG = qresp.get_response(ksource,
                                              lmax_ivf,
                                              ksource,
                                              cls_weight,
                                              cls_len,
                                              fal_jtTP,
                                              lmax_qlm=lmax_qlm)
        N0s[ksource] = utils.cli(RG**2) * NG
        N0_curls[ksource] = utils.cli(RC**2) * NC

    return N0s, N0_curls
Exemple #6
0
def get_N0_iter(qe_key: str,
                nlev_t: float or np.ndarray,
                nlev_p: float or np.ndarray,
                beam_fwhm: float,
                cls_unl_fid: dict,
                lmin_cmb,
                lmax_cmb,
                itermax,
                cls_unl_dat=None,
                lmax_qlm=None,
                ret_delcls=False,
                datnoise_cls: dict or None = None):
    r"""Iterative lensing-N0 estimate

        Calculates iteratively partially lensed spectra and lensing noise levels.
        This uses the python camb package to get the partially lensed spectra.

        At each iteration this takes out the resolved part of the lenses and recomputes a N0

        Args:
            qe_key: QE estimator key
            nlev_t: temperature noise level (in :math:`\mu `K-arcmin) (an array can be passed for scale-dependent noise level)
            nlev_p: polarisation noise level (in :math:`\mu `K-arcmin)(an array can be passed for scale-dependent noise level)
            beam_fwhm: Gaussian beam full width half maximum in arcmin
            cls_unl_fid(dict): unlensed CMB power spectra
            lmin_cmb: minimal CMB multipole used in the QE
            lmax_cmb: maximal CMB multipole used in the QE
            itermax: number of iterations to perform
            lmax_qlm(optional): maximum lensing multipole to consider. Defaults to 2 lmax_ivf
            ret_delcls(optional): returns the partially delensed CMB cls as well if set
            datnoise_cls(optional): feeds in custom noise spectra to the data. The nlevs and beam only apply to the filtering in this case

        Returns
            Array of shape (itermax + 1, lmax_qlm + 1) with all iterated N0s. First entry is standard N0.


        Note:
            this is requiring camb python package for the lensed spectra calc.

     """
    assert qe_key in ['p_p', 'p', 'ptt'], qe_key
    try:
        from camb.correlations import lensed_cls
    except ImportError:
        assert 0, "could not import camb.correlations.lensed_cls"

    if isinstance(lmax_cmb, dict):
        lmaxs_ivf = lmax_cmb
        print("Seeing lmax's:")
        for s in lmaxs_ivf.keys():
            print(s + ': ' + str(lmaxs_ivf[s]))
    else:
        lmaxs_ivf = {s: lmax_cmb for s in ['t', 'e', 'b']}
    lmin_ivf = lmin_cmb
    lmax_ivf = np.max(list(lmaxs_ivf.values()))
    if lmax_qlm is None:
        lmax_qlm = 2 * lmax_ivf
    lmax_qlm = min(lmax_qlm, 2 * lmax_ivf)
    lmin_ivf = max(lmin_ivf, 1)
    transfi2 = utils.cli(
        hp.gauss_beam(beam_fwhm / 180. / 60. * np.pi, lmax=lmax_ivf))**2
    llp2 = np.arange(lmax_qlm + 1, dtype=float)**2 * np.arange(
        1, lmax_qlm + 2, dtype=float)**2 / (2. * np.pi)
    if datnoise_cls is None:
        datnoise_cls = dict()
        if qe_key in ['ptt', 'p']:
            datnoise_cls['tt'] = (nlev_t * np.pi / 180. / 60.)**2 * transfi2
        if qe_key in ['p_p', 'p']:
            datnoise_cls['ee'] = (nlev_p * np.pi / 180. / 60.)**2 * transfi2
            datnoise_cls['bb'] = (nlev_p * np.pi / 180. / 60.)**2 * transfi2
    N0s_biased = []
    N0s_unbiased = []
    delcls_fid = []
    delcls_true = []

    N0_unbiased = np.inf
    if cls_unl_dat is None:
        cls_unl_dat = cls_unl_fid

    for irr, it in utils.enumerate_progress(range(itermax + 1)):
        dls_unl_true, cldd_true = cls2dls(cls_unl_dat)
        dls_unl_fid, cldd_fid = cls2dls(cls_unl_fid)
        if it == 0:
            rho_sqd_phi = 0.
        else:
            # The cross-correlation coefficient is identical for the Rfid-biased QE or the rescaled one
            rho_sqd_phi = np.zeros(len(cldd_true))
            rho_sqd_phi[:lmax_qlm + 1] = cldd_true[:lmax_qlm + 1] * utils.cli(
                cldd_true[:lmax_qlm + 1] + llp2 * N0_unbiased[:lmax_qlm + 1])

        cldd_true *= (1. - rho_sqd_phi)  # The true residual lensing spec.
        cldd_fid *= (1. - rho_sqd_phi
                     )  # What I think the residual lensing spec is
        cls_plen_fid = dls2cls(lensed_cls(dls_unl_fid, cldd_fid))
        cls_plen_true = dls2cls(lensed_cls(dls_unl_true, cldd_true))

        cls_filt = cls_plen_fid
        cls_f = cls_plen_true
        fal = {}
        dat_delcls = {}
        if qe_key in ['ptt', 'p']:
            fal['tt'] = cls_filt['tt'][:lmax_ivf + 1] + (
                nlev_t * np.pi / 180. / 60.)**2 * transfi2
            dat_delcls['tt'] = cls_plen_true['tt'][:lmax_ivf +
                                                   1] + datnoise_cls['ee']
        if qe_key in ['p_p', 'p']:
            fal['ee'] = cls_filt['ee'][:lmax_ivf + 1] + (
                nlev_p * np.pi / 180. / 60.)**2 * transfi2
            fal['bb'] = cls_filt['bb'][:lmax_ivf + 1] + (
                nlev_p * np.pi / 180. / 60.)**2 * transfi2
            dat_delcls['ee'] = cls_plen_true['ee'][:lmax_ivf +
                                                   1] + datnoise_cls['ee']
            dat_delcls['bb'] = cls_plen_true['bb'][:lmax_ivf +
                                                   1] + datnoise_cls['bb']
        if qe_key in ['p']:
            fal['te'] = np.copy(cls_filt['te'][:lmax_ivf + 1])
            dat_delcls['te'] = np.copy(cls_plen_true['te'][:lmax_ivf + 1])
        for spec in fal.keys():
            fal[spec][min(lmaxs_ivf[spec[0]], lmaxs_ivf[spec[1]]) + 1:] *= 0
        for spec in dat_delcls.keys():
            dat_delcls[spec][min(lmaxs_ivf[spec[0]], lmaxs_ivf[spec[1]]) +
                             1:] *= 0

        fal = utils.cl_inverse(fal)
        for cl in fal.values():
            cl[:lmin_ivf] *= 0.
        for cl in dat_delcls.values():
            cl[:lmin_ivf] *= 0.
        cls_ivfs = utils.cls_dot([fal, dat_delcls, fal], ret_dict=True)
        cls_w = deepcopy(cls_plen_fid)
        for spec in cls_w.keys():  # in principle not necessary
            cls_w[spec][:lmin_ivf] *= 0.
            cls_w[spec][min(lmaxs_ivf[spec[0]], lmaxs_ivf[spec[1]]) + 1:] *= 0

        n_gg = nhl.get_nhl(qe_key,
                           qe_key,
                           cls_w,
                           cls_ivfs,
                           lmax_ivf,
                           lmax_ivf,
                           lmax_out=lmax_qlm)[0]
        r_gg_true = qresp.get_response(qe_key,
                                       lmax_ivf,
                                       'p',
                                       cls_w,
                                       cls_f,
                                       fal,
                                       lmax_qlm=lmax_qlm)[0]
        r_gg_fid = qresp.get_response(
            qe_key, lmax_ivf, 'p', cls_w, cls_w, fal,
            lmax_qlm=lmax_qlm)[0] if cls_f is not cls_w else r_gg_true
        N0_biased = n_gg * utils.cli(
            r_gg_fid**
            2)  # N0 of possibly biased (by Rtrue / Rfid) QE estimator
        N0_unbiased = n_gg * utils.cli(
            r_gg_true**2
        )  # N0 of QE estimator after rescaling by Rfid / Rtrue to make it unbiased
        N0s_biased.append(N0_biased)
        N0s_unbiased.append(N0_unbiased)
        cls_plen_true['pp'] = cldd_true * utils.cli(
            np.arange(len(cldd_true))**2 *
            np.arange(1, len(cldd_true) + 1, dtype=float)**2 / (2. * np.pi))
        cls_plen_fid['pp'] = cldd_fid * utils.cli(
            np.arange(len(cldd_fid))**2 *
            np.arange(1, len(cldd_fid) + 1, dtype=float)**2 / (2. * np.pi))

        delcls_fid.append(cls_plen_fid)
        delcls_true.append(cls_plen_true)

    return (np.array(N0s_biased),
            np.array(N0s_unbiased)) if not ret_delcls else (
                (np.array(N0s_biased), np.array(N0s_unbiased), delcls_fid,
                 delcls_true))