Exemple #1
0
def analyze_bound(img,
                  imgname,
                  obj,
                  mask,
                  line_position,
                  device,
                  debug=None,
                  filename=False):
    """User-input boundary line tool

    Inputs:
    img             = image
    imgname         = name of input image
    obj             = single or grouped contour object
    mask            = mask made from selected contours
    shape_header    = pass shape header data to function
    shape_data      = pass shape data so that analyze_bound data can be appended to it
    line_position   = position of boundry line (a value of 0 would draw the line through the bottom of the image)
    device          = device number. Used to count steps in the pipeline
    debug           = None, print, or plot. Print = save to file, Plot = print to screen.
    filename        = False or image name. If defined print image.

    Returns:
    device          = device number
    bound_header    = data table column headers
    bound_data      = boundary data table
    analysis_images = output image filenames

    :param img: numpy array
    :param imgname: str
    :param obj: list
    :param mask: numpy array
    :param line_position: int
    :param device: int
    :param debug: str
    :param filename: str
    :return device: int
    :return bound_header: tuple
    :return bound_data: tuple
    :return analysis_images: list
    """

    # Note analyze_bound is now a wrapper for newer function analyze_bound Horizontal
    sys.stderr.write(
        'analyze_bound function will be depricated in the near future, please use analyze_bound_horizontal, which has the same functionality\n'
    )

    device, bound_header, bound_data, analysis_images = analyze_bound_horizontal(
        img, obj, mask, line_position, device, debug, filename)

    return device, bound_header, bound_data, analysis_images
def main():

    # Set variables
    args = options()
    pcv.params.debug = args.debug

    # Read and rotate image
    img, path, filename = pcv.readimage(filename=args.image)
    img = pcv.rotate(img, -90, False)

    # Create mask from LAB b channel
    l = pcv.rgb2gray_lab(rgb_img=img, channel='b')
    l_thresh = pcv.threshold.binary(gray_img=l,
                                    threshold=115,
                                    max_value=255,
                                    object_type='dark')
    l_mblur = pcv.median_blur(gray_img=l_thresh, ksize=5)

    # Apply mask to image
    masked = pcv.apply_mask(img=img, mask=l_mblur, mask_color='white')
    ab_fill = pcv.fill(bin_img=l_mblur, size=50)

    # Extract plant object from image
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=ab_fill)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked,
                                            x=150,
                                            y=270,
                                            h=100,
                                            w=100)
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    # Analyze shape properties
    analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    boundary_image2 = pcv.analyze_bound_horizontal(img=img,
                                                   obj=obj,
                                                   mask=mask,
                                                   line_position=370)

    # Analyze colour properties
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')

    # Analyze shape independent of size
    top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)
    top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)

    # Print results
    pcv.print_results(filename='{}'.format(args.result))
    pcv.print_image(img=color_histogram,
                    filename='{}_color_hist.jpg'.format(args.outdir))
    pcv.print_image(img=kept_mask, filename='{}_mask.jpg'.format(args.outdir))
Exemple #3
0
analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
pcv.print_image(img=analysis_image,
                filename="upload/output_imgs/object_img.jpg")

# In[25]:

# Shape properties relative to user boundary line (optional)

# Inputs:
#   img - RGB or grayscale image data
#   obj - Single or grouped contour object
#   mask - Binary mask of selected contours
#   line_position - Position of boundary line (a value of 0 would draw a line
#                   through the bottom of the image)
boundary_image2 = pcv.analyze_bound_horizontal(img=img,
                                               obj=obj,
                                               mask=mask,
                                               line_position=370)

# In[26]:

# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)

# Inputs:
#   rgb_img - RGB image data
#   mask - Binary mask of selected contours
#   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
#                    This is the data to be printed to the SVG histogram file
color_histogram = pcv.analyze_color(rgb_img=img,
                                    mask=kept_mask,
                                    hist_plot_type='all')
# Print the histogram out to save it
def main():
    # create options object for argument parsing
    args = options()
    # set device
    device = 0
    # set debug
    pcv.params.debug = args.debug

    outfile = False
    if args.writeimg:
        outfile = os.path.join(args.outdir, os.path.basename(args.image)[:-4])

    # read in image
    img, path, filename = pcv.readimage(filename=args.image, debug=args.debug)

    # read in a background image for each zoom level
    config_file = open(args.bkg, 'r')
    config = json.load(config_file)
    config_file.close()
    if "z1500" in args.image:
        bkg_image = config["z1500"]
    elif "z2500" in args.image:
        bkg_image = config["z2500"]
    else:
        pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))

    bkg, bkg_path, bkg_filename = pcv.readimage(filename=bkg_image, debug=args.debug)

    # Detect edges in the background image
    device, bkg_sat = pcv.rgb2gray_hsv(img=bkg, channel="s", device=device, debug=args.debug)
    device += 1
    bkg_edges = feature.canny(bkg_sat)
    if args.debug == "print":
        pcv.print_image(img=bkg_edges, filename=str(device) + '_background_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=bkg_edges, cmap="gray")

    # Close background edge contours
    bkg_edges_closed = ndi.binary_closing(bkg_edges)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=bkg_edges_closed, filename=str(device) + '_closed_background_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=bkg_edges_closed, cmap="gray")

    # Fill in closed contours in background
    bkg_fill_contours = ndi.binary_fill_holes(bkg_edges_closed)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=bkg_fill_contours, filename=str(device) + '_filled_background_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=bkg_fill_contours, cmap="gray")

    # Naive Bayes image classification/segmentation
    device, mask = pcv.naive_bayes_classifier(img=img, pdf_file=args.pdf, device=device, debug=args.debug)

    # Do a light cleaning of the plant mask to remove small objects
    cleaned = morphology.remove_small_objects(mask["plant"].astype(bool), 2)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=cleaned, filename=str(device) + '_cleaned_mask.png')
    elif args.debug == "plot":
        pcv.plot_image(img=cleaned, cmap="gray")

    # Convert the input image to a saturation channel grayscale image
    device, sat = pcv.rgb2gray_hsv(img=img, channel="s", device=device, debug=args.debug)

    # Detect edges in the saturation image
    edges = feature.canny(sat)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=edges, filename=str(device) + '_plant_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=edges, cmap="gray")

    # Combine pixels that are in both foreground edges and the filled background edges
    device, combined_bkg = pcv.logical_and(img1=edges.astype(np.uint8) * 255,
                                           img2=bkg_fill_contours.astype(np.uint8) * 255, device=device,
                                           debug=args.debug)

    # Remove background pixels from the foreground edges
    device += 1
    filtered = np.copy(edges)
    filtered[np.where(combined_bkg == 255)] = False
    if args.debug == "print":
        pcv.print_image(img=filtered, filename=str(device) + '_filtered_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=filtered, cmap="gray")

    # Combine the cleaned naive Bayes mask and the filtered foreground edges
    device += 1
    combined = cleaned + filtered
    if args.debug == "print":
        pcv.print_image(img=combined, filename=str(device) + '_combined_foreground.png')
    elif args.debug == "plot":
        pcv.plot_image(img=combined, cmap="gray")

    # Close off broken edges and other incomplete contours
    device += 1
    closed_features = ndi.binary_closing(combined, structure=np.ones((3, 3)))
    if args.debug == "print":
        pcv.print_image(img=closed_features, filename=str(device) + '_closed_features.png')
    elif args.debug == "plot":
        pcv.plot_image(img=closed_features, cmap="gray")

    # Fill in holes in contours
    # device += 1
    # fill_contours = ndi.binary_fill_holes(closed_features)
    # if args.debug == "print":
    #     pcv.print_image(img=fill_contours, filename=str(device) + '_filled_contours.png')
    # elif args.debug == "plot":
    #     pcv.plot_image(img=fill_contours, cmap="gray")

    # Use median blur to break horizontal and vertical thin edges (pot edges)
    device += 1
    blurred_img = ndi.median_filter(closed_features.astype(np.uint8) * 255, (3, 1))
    blurred_img = ndi.median_filter(blurred_img, (1, 3))
    # Remove small objects left behind by blurring
    cleaned2 = morphology.remove_small_objects(blurred_img.astype(bool), 200)
    if args.debug == "print":
        pcv.print_image(img=cleaned2, filename=str(device) + '_cleaned_by_median_blur.png')
    elif args.debug == "plot":
        pcv.plot_image(img=cleaned2, cmap="gray")

    # Define region of interest based on camera zoom level for masking the naive Bayes classified image
    # if "z1500" in args.image:
    #     h = 1000
    # elif "z2500" in args.image:
    #     h = 1050
    # else:
    #     pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))
    # roi, roi_hierarchy = pcv.roi.rectangle(x=300, y=150, w=1850, h=h, img=img)

    # Mask the classified image to remove noisy areas prior to finding contours
    # side_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8)
    # cv2.drawContours(side_mask, roi, -1, (255), -1)
    # device, masked_img = pcv.apply_mask(img=cv2.merge([mask["plant"], mask["plant"], mask["plant"]]), mask=side_mask,
    #                                     mask_color="black", device=device, debug=args.debug)
    # Convert the masked image back to grayscale
    # masked_img = masked_img[:, :, 0]
    # Close off contours at the base of the plant
    # if "z1500" in args.image:
    #     pt1 = (1100, 1118)
    #     pt2 = (1340, 1120)
    # elif "z2500" in args.image:
    #     pt1 = (1020, 1162)
    #     pt2 = (1390, 1166)
    # else:
    #     pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))
    # masked_img = cv2.rectangle(np.copy(masked_img), pt1, pt2, (255), -1)
    # closed_mask = ndi.binary_closing(masked_img.astype(bool), iterations=3)

    # Find objects in the masked naive Bayes mask
    # device, objects, obj_hierarchy = pcv.find_objects(img=img, mask=np.copy(masked_img), device=device,
    #                                                   debug=args.debug)
    # objects, obj_hierarchy = cv2.findContours(np.copy(closed_mask.astype(np.uint8) * 255), cv2.RETR_CCOMP,
    #                                           cv2.CHAIN_APPROX_NONE)[-2:]

    # Clean up the combined plant edges/mask image by removing filled in gaps/holes
    # device += 1
    # cleaned3 = np.copy(cleaned2)
    # cleaned3 = cleaned3.astype(np.uint8) * 255
    # # Loop over the contours from the naive Bayes mask
    # for c, contour in enumerate(objects):
    #     # Calculate the area of each contour
    #     # area = cv2.contourArea(contour)
    #     # If the contour is a hole (i.e. it has no children and it has a parent)
    #     # And it is not a small hole in a leaf that was not classified
    #     if obj_hierarchy[0][c][2] == -1 and obj_hierarchy[0][c][3] > -1:
    #         # Then fill in the contour (hole) black on the cleaned mask
    #         cv2.drawContours(cleaned3, objects, c, (0), -1, hierarchy=obj_hierarchy)
    # if args.debug == "print":
    #     pcv.print_image(img=cleaned3, filename=str(device) + '_gaps_removed.png')
    # elif args.debug == "plot":
    #     pcv.plot_image(img=cleaned3, cmap="gray")

    # Find contours using the cleaned mask
    device, contours, contour_hierarchy = pcv.find_objects(img=img, mask=np.copy(cleaned2.astype(np.uint8)),
                                                           device=device, debug=args.debug)

    # Define region of interest based on camera zoom level for contour filtering
    if "z1500" in args.image:
        h = 940
    elif "z2500" in args.image:
        h = 980
    else:
        pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))
    roi, roi_hierarchy = pcv.roi.rectangle(x=300, y=150, w=1850, h=h, img=img)

    # Filter contours in the region of interest
    device, roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_type='partial', roi_contour=roi,
                                                                          roi_hierarchy=roi_hierarchy,
                                                                          object_contour=contours,
                                                                          obj_hierarchy=contour_hierarchy,
                                                                          device=device, debug=args.debug)

    # Analyze only images with plants present
    if len(roi_objects) > 0:
        # Object combine kept objects
        device, plant_contour, plant_mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy,
                                                                   device=device, debug=args.debug)

        if args.writeimg:
            # Save the plant mask if requested
            pcv.print_image(img=plant_mask, filename=outfile + "_mask.png")

        # Find shape properties, output shape image
        device, shape_header, shape_data, shape_img = pcv.analyze_object(img=img, imgname=args.image, obj=plant_contour,
                                                                         mask=plant_mask, device=device,
                                                                         debug=args.debug,
                                                                         filename=outfile)
        # Set the boundary line based on the camera zoom level
        if "z1500" in args.image:
            line_position = 930
        elif "z2500" in args.image:
            line_position = 885
        else:
            pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))

        # Shape properties relative to user boundary line
        device, boundary_header, boundary_data, boundary_img = pcv.analyze_bound_horizontal(img=img, obj=plant_contour,
                                                                                            mask=plant_mask,
                                                                                            line_position=line_position,
                                                                                            device=device,
                                                                                            debug=args.debug,
                                                                                            filename=outfile)

        # Determine color properties: Histograms, Color Slices and Pseudocolored Images,
        # output color analyzed images
        device, color_header, color_data, color_img = pcv.analyze_color(img=img, imgname=args.image, mask=plant_mask,
                                                                        bins=256,
                                                                        device=device, debug=args.debug,
                                                                        hist_plot_type=None,
                                                                        pseudo_channel="v", pseudo_bkg="img",
                                                                        resolution=300,
                                                                        filename=outfile)

        # Output shape and color data
        result = open(args.result, "a")
        result.write('\t'.join(map(str, shape_header)) + "\n")
        result.write('\t'.join(map(str, shape_data)) + "\n")
        for row in shape_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.write('\t'.join(map(str, color_header)) + "\n")
        result.write('\t'.join(map(str, color_data)) + "\n")
        result.write('\t'.join(map(str, boundary_header)) + "\n")
        result.write('\t'.join(map(str, boundary_data)) + "\n")
        result.write('\t'.join(map(str, boundary_img)) + "\n")
        for row in color_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.close()
# Outline (blue) of all combined objects.
obj, mask = pcv.object_composition(img=img,
                                   contours=roi_objects,
                                   hierarchy=hierarchy3)

# In[49]:

# Shape analysis.
shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)

# In[50]:

# Boundary line output.
boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                             obj=obj,
                                             mask=mask,
                                             line_position=1680)

# In[54]:

# Histogram of color analysis.
color_histogram = pcv.analyze_color(rgb_img=img,
                                    mask=kept_mask,
                                    hist_plot_type='all')

# In[55]:

# Pseudocolored image based on value channels. This one analyzes saturation but can be
# manipulated to analyze hue or value.
pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s,
                                              mask=kept_mask,
def plantCVProcess(img, x, y, w, h):

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2, x=x, y=y, h=h, w=w)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1,
                                                               roi_hierarchy=roi_hierarchy,
                                                               object_contour=id_objects,
                                                               obj_hierarchy=obj_hierarchy,
                                                               roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)

    ############### Analysis ################

    # Find shape properties, output shape image (optional)
    shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680)

    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)
    color_histogram = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='all')

    # Pseudocolor the grayscale image
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s, mask=mask, cmap='jet')

    return print_results()
def silhouette_top():
    "First we draw the picture from the 3D data"
    ########################################################################################################################################################################
    x = []
    y = []
    z = []
    image_top = Image.new("RGB", (width, height), color='white')
    draw = ImageDraw.Draw(image_top)
    data_3d = open(args.image, "r")
    orignal_file = args.image
    for line in data_3d:
        line = line.split(",")
        y.append(int(line[0]))
        x.append(int(line[1]))
        z.append(int(line[2]))

    i = 0
    for point_x in x:
        point_y = y[i]
        draw.rectangle([point_x, point_y, point_x + 1, point_y + 1],
                       fill="black")
        #rectange takes input [x0, y0, x1, y1]
        i += 1
    image_top.save("top_temp.png")

    image_side = Image.new("RGB", (1280, 960), color='white')
    draw = ImageDraw.Draw(image_side)
    i = 0
    for point_y in y:
        point_z = z[i]
        draw.rectangle([point_z, point_y, point_z + 1, point_y + 1],
                       fill="black")
        #rectange takes input [x0, y0, x1, y1]
        i += 1
    image_side.save("side_temp.png")
    ########################################################################################################################################################################

    args.image = "top_temp.png"
    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')
    v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v,
                                                         lower_thresh=[0],
                                                         upper_thresh=[200],
                                                         channel='gray')

    id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image,
                                                 mask=v_thresh)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image,
                                            x=0,
                                            y=0,
                                            h=height,
                                            w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    outfile = args.outdir + "/" + filename

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "_top_boundary.png")

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "_top_shape.png")

    new_im.save("output//" + args.filename + "shape_img.png")
    GT = re.sub(pattern, replacement, files_names[file_counter])
    pcv.outputs.add_observation(variable="genotype",
                                trait="genotype",
                                method="Regexed from the filename",
                                scale=None,
                                datatype=str,
                                value=int(GT),
                                label="GT")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
    ##########################################################################################################################################

    args.image = "side_temp.png"
    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')
    v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v,
                                                         lower_thresh=[0],
                                                         upper_thresh=[200],
                                                         channel='gray')

    id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image,
                                                 mask=v_thresh)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image,
                                            x=0,
                                            y=0,
                                            h=height,
                                            w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    outfile = args.outdir + "/" + filename

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "_side_boundary.png")

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "_side_shape.png")

    GT = re.sub(pattern, replacement, files_names[file_counter])
    pcv.outputs.add_observation(variable="genotype",
                                trait="genotype",
                                method="Regexed from the filename",
                                scale=None,
                                datatype=str,
                                value=int(GT),
                                label="GT")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result_side)
def main():
    args = options()  #create options object for argument parsing
    device = 0  #set device
    params.debug = args.debug  #set debug

    outfile = False
    if args.writeimg:
        outfile = os.path.join(args.outdir, os.path.basename(args.image)[:-4])

    # In[114]:

    img, path, filename = pcv.readimage(filename=args.image,
                                        debug=args.debug)  #read in image
    background = pcv.transform.load_matrix(
        args.npz)  #read in background mask image for subtraction

    # In[115]:

    device, mask = pcv.naive_bayes_classifier(
        img, args.pdf, device, args.debug)  #naive bayes on image

    #if args.writeimg:
    #   pcv.print_image(img=mask["94,104,47"], filename=outfile + "_nb_mask.png")

    # In[116]:

    new_mask = pcv.image_subtract(mask["94,104,47"],
                                  background)  #subtract background noise

    # In[117]:

    #image blurring using scipy median filter
    blurred_img = ndimage.median_filter(new_mask, (7, 1))
    blurred_img = ndimage.median_filter(blurred_img, (1, 7))
    device, cleaned = pcv.fill(np.copy(blurred_img), np.copy(blurred_img), 50,
                               0, args.debug)  #fill leftover noise

    # In[118]:

    #dilate and erode to repair plant breaks from background subtraction
    device, cleaned_dilated = pcv.dilate(cleaned, 6, 1, 0)
    device, cleaned = pcv.erode(cleaned_dilated, 6, 1, 0, args.debug)

    # In[119]:

    device, objects, obj_hierarchy = pcv.find_objects(
        img, cleaned, device, debug=args.debug)  #find objects using mask
    if "TM015" in args.image:
        h = 1620
    elif "TM016" in args.image:
        h = 1555
    else:
        h = 1320
    roi_contour, roi_hierarchy = pcv.roi.rectangle(x=570,
                                                   y=0,
                                                   h=h,
                                                   w=1900 - 550,
                                                   img=img)  #grab ROI

    # In[120]:

    #isolate plant objects within ROI
    device, roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(
        img,
        'partial',
        roi_contour,
        roi_hierarchy,
        objects,
        obj_hierarchy,
        device,
        debug=args.debug)

    #Analyze only images with plants present.
    if roi_objects > 0:
        # In[121]:

        # Object combine kept objects
        device, plant_contour, plant_mask = pcv.object_composition(
            img=img,
            contours=roi_objects,
            hierarchy=hierarchy,
            device=device,
            debug=args.debug)

        if args.writeimg:
            pcv.print_image(img=plant_mask, filename=outfile + "_mask.png")

        # In[122]:

        # Find shape properties, output shape image (optional)
        device, shape_header, shape_data, shape_img = pcv.analyze_object(
            img=img,
            imgname=args.image,
            obj=plant_contour,
            mask=plant_mask,
            device=device,
            debug=args.debug,
            filename=outfile + ".png")

        # In[123]:

        if "TM015" in args.image:
            line_position = 380
        elif "TM016" in args.image:
            line_position = 440
        else:
            line_position = 690

        # Shape properties relative to user boundary line (optional)
        device, boundary_header, boundary_data, boundary_img = pcv.analyze_bound_horizontal(
            img=img,
            obj=plant_contour,
            mask=plant_mask,
            line_position=line_position,
            device=device,
            debug=args.debug,
            filename=outfile + ".png")

        # In[124]:

        # Determine color properties: Histograms, Color Slices and Pseudocolored Images,
        # output color analyzed images (optional)
        device, color_header, color_data, color_img = pcv.analyze_color(
            img=img,
            imgname=args.image,
            mask=plant_mask,
            bins=256,
            device=device,
            debug=args.debug,
            hist_plot_type=None,
            pseudo_channel="v",
            pseudo_bkg="img",
            resolution=300,
            filename=outfile + ".png")

        # In[55]:

        # Output shape and color data
        result = open(args.result, "a")
        result.write('\t'.join(map(str, shape_header)) + "\n")
        result.write('\t'.join(map(str, shape_data)) + "\n")
        for row in shape_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.write('\t'.join(map(str, color_header)) + "\n")
        result.write('\t'.join(map(str, color_data)) + "\n")
        result.write('\t'.join(map(str, boundary_header)) + "\n")
        result.write('\t'.join(map(str, boundary_data)) + "\n")
        result.write('\t'.join(map(str, boundary_img)) + "\n")
        for row in color_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.close()
def main():

    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    img, path, filename = pcv.readimage(filename=args.image, mode='rgb')

    ### SELECTING THE PLANT

    ### Attempt 5 combineren
    # Parameters
    hue_lower_tresh = 22  # 24
    hue_higher_tresh = 50  # 50
    saturation_lower_tresh = 138  # 140
    saturation_higher_tresh = 230  # 230
    value_lower_tresh = 120  # 125
    value_higher_tresh = 255  # 255
    # RGB color space
    green_lower_tresh = 105  # 110
    green_higher_tresh = 255  # 255
    red_lower_tresh = 22  # 24
    red_higher_thresh = 98  # 98
    blue_lower_tresh = 85  # 85
    blue_higher_tresh = 253  # 255
    # CIELAB color space
    #lab_blue_lower_tresh = 0            # Blue yellow channel
    #lab_blue_higher_tresh = 255

    s = pcv.rgb2gray_hsv(rgb_img=img, channel='h')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[hue_lower_tresh],
        upper_thresh=[hue_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=img, mask=mask, mask_color='white')
    # Filtered on Hue
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='s')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[saturation_lower_tresh],
        upper_thresh=[saturation_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on saturation
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='v')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[value_lower_tresh],
        upper_thresh=[value_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on value
    mask, masked = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[0, green_lower_tresh, 0],
        upper_thresh=[255, green_higher_tresh, 255],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on green
    mask, masked = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[red_lower_tresh, 0, 0],
        upper_thresh=[red_higher_thresh, 255, 255],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on red
    mask_old, masked_old = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[0, 0, blue_lower_tresh],
        upper_thresh=[255, 255, blue_higher_tresh],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked_old,
                            mask=mask_old,
                            mask_color='white')
    #filtered on blue
    #b = pcv.rgb2gray_lab(rgb_img = masked, channel = 'b')   # Converting toe CIElab blue_yellow image
    #b_thresh =pcv.threshold.binary(gray_img = b, threshold=lab_blue_lower_tresh, max_value = lab_blue_higher_tresh)

    ###_____________________________________ Now to identify objects
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(
        gray_img=masked_a,
        threshold=125,  # original 115
        max_value=255,
        object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(
        gray_img=masked_a,
        threshold=140,  # original 135
        max_value=255,
        object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    # Inputs:
    #   bin_img - Binary image data
    #   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    ab = pcv.median_blur(gray_img=ab, ksize=3)
    ab_fill = pcv.fill(bin_img=ab, size=1000)
    #print("filled")
    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')
    # ID the objects
    id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill)
    # Let's just take the largest
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=0,
                                            y=0,
                                            h=960,
                                            w=1280)  # Currently hardcoded

    # Decide which objects to keep
    # Inputs:
    #    img            = img to display kept objects
    #    roi_contour    = contour of roi, output from any ROI function
    #    roi_hierarchy  = contour of roi, output from any ROI function
    #    object_contour = contours of objects, output from pcv.find_objects function
    #    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
    #    roi_type       = 'partial' (default, for partially inside), 'cutto', or
    #    'largest' (keep only largest contour)
    with HiddenPrints():
        roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
            img=img,
            roi_contour=roi1,
            roi_hierarchy=roi_hierarchy,
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy,
            roi_type='partial')
    # Object combine kept objects
    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   contours - Contour list
    #   hierarchy - Contour hierarchy array
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    #print("final plant")
    new_im = Image.fromarray(masked2)
    new_im.save("output//" + args.filename + "last_masked.png")

    ##################_________________ Analysis

    outfile = args.outdir + "/" + filename
    # Here come all the analyse functions.
    # pcv.acute_vertex(img, obj, 30, 15, 100)

    color_img = pcv.analyze_color(rgb_img=img,
                                  mask=kept_mask,
                                  hist_plot_type=None)
    #new_im = Image.fromarray(color_img)
    #new_im.save(args.filename + "color_img.png")

    # Find shape properties, output shape image (optional)

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "shape_img.png")
    # Shape properties relative to user boundary line (optional)

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj - Single or grouped contour object
    #   mask - Binary mask of selected contours
    #   line_position - Position of boundary line (a value of 0 would draw a line
    #                   through the bottom of the image)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "boundary_img.png")
    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)

    # Inputs:
    #   rgb_img - RGB image data
    #   mask - Binary mask of selected contours
    #   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
    #                    This is the data to be printed to the SVG histogram file
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    #new_im = Image.fromarray(color_histogram)
    #new_im.save(args.filename + "color_histogram_img.png")

    # Pseudocolor the grayscale image

    # Inputs:
    #     gray_img - Grayscale image data
    #     obj - Single or grouped contour object (optional), if provided the pseudocolored image gets
    #           cropped down to the region of interest.
    #     mask - Binary mask (optional)
    #     background - Background color/type. Options are "image" (gray_img, default), "white", or "black". A mask
    #                  must be supplied.
    #     cmap - Colormap
    #     min_value - Minimum value for range of interest
    #     max_value - Maximum value for range of interest
    #     dpi - Dots per inch for image if printed out (optional, if dpi=None then the default is set to 100 dpi).
    #     axes - If False then the title, x-axis, and y-axis won't be displayed (default axes=True).
    #     colorbar - If False then the colorbar won't be displayed (default colorbar=True)
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s,
                                                  mask=kept_mask,
                                                  cmap='jet')
    #new_im = Image.fromarray(pseudocolored_img)
    #new_im.save(args.filename + "pseudocolored.png")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
def root():
    				uploaded_file = st.file_uploader("Choose an image...", type="jpg")
    				if uploaded_file is not None:
    					inp = Image.open(uploaded_file)
    					inp.save('input.jpg')
    					img, path, filename = pcv.readimage(filename='input.jpg')
    					image = Image.open('input.jpg')
    					st.image(image, caption='Original Image',use_column_width=True)
                    # Convert RGB to HSV and extract the saturation channel
    # Inputs:
    #   rgb_image - RGB image data 
    #   channel - Split by 'h' (hue), 's' (saturation), or 'v' (value) channel
					
    					s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    					pcv.print_image(s, "plant/rgbtohsv.png")
    					image = Image.open('plant/rgbtohsv.png')
    					st.image(image, caption='RGB to HSV', use_column_width=True)
    					s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light')
    					pcv.print_image(s_thresh, "plant/binary_threshold.png")
    					image = Image.open('plant/binary_threshold.png')
    					st.image(image, caption='Binary Threshold',use_column_width=True)
                   
    # Median Blur to clean noise 

    # Inputs: 
    #   gray_img - Grayscale image data 
    #   ksize - Kernel size (integer or tuple), (ksize, ksize) box if integer input,
    #           (n, m) box if tuple input 

    					s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    					pcv.print_image(s_mblur, "plant/Median_blur.png")
    					image = Image.open('plant/Median_blur.png')
    					st.image(image, caption='Median Blur',use_column_width=True)
                    
     # An alternative to using median_blur is gaussian_blur, which applies 
    # a gaussian blur filter to the image. Depending on the image, one 
    # technique may be more effective than others. 

    # Inputs:
    #   img - RGB or grayscale image data
    #   ksize - Tuple of kernel size
    #   sigma_x - Standard deviation in X direction; if 0 (default), 
    #            calculated from kernel size
    #   sigma_y - Standard deviation in Y direction; if sigmaY is 
    #            None (default), sigmaY is taken to equal sigmaX
                
    					gaussian_img = pcv.gaussian_blur(img=s_thresh, ksize=(5, 5), sigma_x=0, sigma_y=None)
    # Convert RGB to LAB and extract the blue channel ('b')

    # Input:
    #   rgb_img - RGB image data 
    #   channel- Split by 'l' (lightness), 'a' (green-magenta), or 'b' (blue-yellow) channel
    					b = pcv.rgb2gray_lab(rgb_img=img, channel='b')
    					b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, 
                                object_type='light')
                     # Join the threshold saturation and blue-yellow images with a logical or operation 

    # Inputs: 
    #   bin_img1 - Binary image data to be compared to bin_img2
    #   bin_img2 - Binary image data to be compared to bin_img1

    
    					bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    					pcv.print_image(bs, "plant/threshold comparison.png")
    					image = Image.open('plant/threshold comparison.png')
    					st.image(image, caption='Threshold Comparision',use_column_width=True)
                    
 # Appy Mask (for VIS images, mask_color='white')

    # Inputs:
    #   img - RGB or grayscale image data 
    #   mask - Binary mask image data 
    #   mask_color - 'white' or 'black' 
    
    					masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')
    					pcv.print_image(masked, "plant/Apply_mask.png")
    					image = Image.open('plant/Apply_mask.png')
    					st.image(image, caption='Applied Mask',use_column_width=True)
                   # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    					masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    					masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')
                     # Threshold the green-magenta and blue images
    					maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark')
    					maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135,max_value=255, object_type='light')
    					maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light')
    					pcv.print_image( maskeda_thresh, "plant/maskeda_thresh.png")
    					pcv.print_image(maskeda_thresh1, "plant/maskeda_thresh1.png")
    					pcv.print_image(maskedb_thresh, "plant/maskedb_thresh1.png")
  
    					image = Image.open('plant/maskeda_thresh.png')
    					st.image(image, caption='Threshold green-magneta and blue image',use_column_width=True)


   # Join the thresholded saturation and blue-yellow images (OR)
    					ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    					ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)
        # Opening filters out bright noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
    					opened_ab = pcv.opening(gray_img=ab)

# Depending on the situation it might be useful to use the 
# exclusive or (pcv.logical_xor) function. 

# Inputs: 
#   bin_img1 - Binary image data to be compared to bin_img2
#   bin_img2 - Binary image data to be compared to bin_img1
    					xor_img = pcv.logical_xor(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
# Fill small objects (reduce image noise) 

# Inputs: 
#   bin_img - Binary image data 
#   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    					ab_fill = pcv.fill(bin_img=ab, size=200)
# Closing filters out dark noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
    					closed_ab = pcv.closing(gray_img=ab_fill)
# Apply mask (for VIS images, mask_color=white)
    					masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')
# Identify objects
# Inputs: 
#   img - RGB or grayscale image data for plotting 
#   mask - Binary mask used for detecting contours 
    					id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)
# Define the region of interest (ROI) 
# Inputs: 
#   img - RGB or grayscale image to plot the ROI on 
#   x - The x-coordinate of the upper left corner of the rectangle 
#   y - The y-coordinate of the upper left corner of the rectangle 
#   h - The height of the rectangle 
#   w - The width of the rectangle 
    					roi1, roi_hierarchy= pcv.roi.rectangle(img=masked2, x=50, y=50, h=100, w=100)
# Decide which objects to keep
# Inputs:
#    img            = img to display kept objects
#    roi_contour    = contour of roi, output from any ROI function
#    roi_hierarchy  = contour of roi, output from any ROI function
#    object_contour = contours of objects, output from pcv.find_objects function
#    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
#    roi_type       = 'partial' (default, for partially inside the ROI), 'cutto', or 
#                     'largest' (keep only largest contour)
    					roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, 
                                                               roi_hierarchy=roi_hierarchy, 
                                                               object_contour=id_objects, 
                                                               obj_hierarchy=obj_hierarchy,
                                                               roi_type='partial')
# Object combine kept objects
# Inputs:
#   img - RGB or grayscale image data for plotting 
#   contours - Contour list 
#   hierarchy - Contour hierarchy array 
    					obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)
############### Analysis ################ 
# Find shape properties, data gets stored to an Outputs class automatically
# Inputs:
#   img - RGB or grayscale image data 
#   obj- Single or grouped contour object
#   mask - Binary image mask to use as mask for moments analysis 
    					analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    					pcv.print_image(analysis_image, "plant/analysis_image.png")
    					image = Image.open('plant/analysis_image.png')
    					st.image(image, caption='Analysis_image',use_column_width=True)
# Shape properties relative to user boundary line (optional)
# Inputs:
#   img - RGB or grayscale image data 
#   obj - Single or grouped contour object 
#   mask - Binary mask of selected contours 
#   line_position - Position of boundary line (a value of 0 would draw a line 
#                   through the bottom of the image) 
    					boundary_image2 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, 
                                               line_position=370)
    					pcv.print_image(boundary_image2, "plant/boundary_image2.png")
    					image = Image.open('plant/boundary_image2.png')
    					st.image(image, caption='Boundary Image',use_column_width=True)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
# Inputs:
#   rgb_img - RGB image data
#   mask - Binary mask of selected contours 
#   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
#                    This is the data to be printed to the SVG histogram file  
    					color_histogram = pcv.analyze_color(rgb_img=img, mask=kept_mask, hist_plot_type='all')
# Print the histogram out to save it 
    					pcv.print_image(img=color_histogram, filename="plant/vis_tutorial_color_hist.jpg")
    					image = Image.open('plant/vis_tutorial_color_hist.jpg')
    					st.image(image, caption='Color Histogram',use_column_width=True)
# Divide plant object into twenty equidistant bins and assign pseudolandmark points based upon their 
# actual (not scaled) position. Once this data is scaled this approach may provide some information 
# regarding shape independent of size.
# Inputs:
#   img - RGB or grayscale image data 
#   obj - Single or grouped contour object 
#   mask - Binary mask of selected contours 
    					top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img, obj=obj, mask=mask)
    					top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img, obj=obj, mask=mask)
# The print_results function will take the measurements stored when running any (or all) of these functions, format, 
# and print an output text file for data analysis. The Outputs class stores data whenever any of the following functions
# are ran: analyze_bound_horizontal, analyze_bound_vertical, analyze_color, analyze_nir_intensity, analyze_object, 
# fluor_fvfm, report_size_marker_area, watershed. If no functions have been run, it will print an empty text file 
    					pcv.print_results(filename='vis_tutorial_results.txt')
def main():
    # Get options
    args = options()

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    # Convert RGB to HSV and extract the saturation channel
    h = pcv.rgb2gray_hsv(rgb_img=img, channel='h')

    # Threshold the saturation image
    h_thresh = pcv.threshold.binary(gray_img=h,
                                    threshold=85,
                                    max_value=255,
                                    object_type='dark')

    # Median Blur
    h_mblur = pcv.median_blur(gray_img=h_thresh, ksize=20)

    h_cnt = pcv.median_blur(gray_img=h_thresh, ksize=20)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b,
                                    threshold=160,
                                    max_value=255,
                                    object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b,
                                 threshold=160,
                                 max_value=255,
                                 object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=h_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=135,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=400,
                                            y=400,
                                            h=200,
                                            w=200)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Find shape properties, output shape image (optional)
    shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=600)

    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')

    # Pseudocolor the grayscale image
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=h,
                                                  mask=kept_mask,
                                                  cmap='jet')

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
Exemple #12
0
def main():
    # Get options
    #args = options()
    parser = argparse.ArgumentParser(
        description="Imaging processing with opencv")
    parser.add_argument("-i",
                        "--image",
                        help="Input image file.",
                        required=True)
    parser.add_argument("-o",
                        "--outdir",
                        help="Output directory for image files.",
                        required=False)
    parser.add_argument("-r", "--result", help="result file.", required=False)
    parser.add_argument("-w",
                        "--writeimg",
                        help="write out images.",
                        default=False,
                        action="store_true")
    parser.add_argument("-f",
                        "--fileout",
                        help="output mask file path",
                        required=True)
    parser.add_argument(
        "-D",
        "--debug",
        help=
        "can be set to 'print' or None (or 'plot' if in jupyter) prints intermediate images.",
        default=None)
    args = parser.parse_args()

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image

    img, path, filename = pcv.readimage(filename=args.image)
    img = cv2.resize(img, (1280, 960), interpolation=cv2.INTER_AREA)

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s,
                                    threshold=35,
                                    max_value=255,
                                    object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b,
                                    threshold=180,
                                    max_value=255,
                                    object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b,
                                 threshold=180,
                                 max_value=255,
                                 object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(rgb_img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=95,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=135,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')
    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=0,
                                            y=0,
                                            h=img.shape[0],
                                            w=img.shape[1])

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Find shape properties, output shape image (optional)
    shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)

    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')

    # Pseudocolor the grayscale image
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s,
                                                  mask=kept_mask,
                                                  cmap='jet')

    # Write shape and color data to results file
    #pcv.print_results(filename=args.result)

    count = 0
    [rows, cols] = mask.shape
    for i in range(rows):
        for j in range(cols):
            if mask[i, j] > 128:
                count += 1
    re = float(count) / (rows * cols)
    text = "rec_rate:" + str(round(re, 4))
    cv2.putText(mask, text, (40, 50), cv2.FONT_HERSHEY_PLAIN, 2.0, 255, 2)
    #cv2.imshow("tt",mask)
    #cv2.waitKey(0)
    cv2.imwrite(args.fileout, mask)
    print(str(round(re, 4)))