Exemple #1
0
def write_output(args, i):
    """Write Outputs for a single ROI

    Parameters
    ----------
    args : dict
        commandline arguments and image metadata
    i : int
        ROI number

    Returns
    -------

    Notes
    -----
    Side effect of printing a json file to disk

    """
    # Here I will name the results file with the ROI ID combined with the original result filename
    basename, ext = os.path.splitext(args.result)
    filename = basename + "-roi" + str(i) + ext
    # Save the existing metadata to the new file
    with open(filename, "w") as r:
        json.dump(args.metadata, r)
    pcv.print_results(filename=filename)
    # The results are saved, now clear out the observations so the next loop adds new ones for the next plant
    pcv.outputs.clear()
Exemple #2
0
def main():
    # Get options
    args = options()

    # Set variables
    device = 0
    pcv.params.debug = args.debug
    img_file = args.image

    # Read image
    img, path, filename = pcv.readimage(filename=img_file, mode='rgb')

    # Process saturation channel from HSV colour space
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    lp_s = pcv.laplace_filter(s, 1, 1)
    shrp_s = pcv.image_subtract(s, lp_s)
    s_eq = pcv.hist_equalization(shrp_s)
    s_thresh = pcv.threshold.binary(gray_img=s_eq,
                                    threshold=215,
                                    max_value=255,
                                    object_type='light')
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Process green-magenta channel from LAB colour space
    b = pcv.rgb2gray_lab(rgb_img=img, channel='a')
    b_lp = pcv.laplace_filter(b, 1, 1)
    b_shrp = pcv.image_subtract(b, b_lp)
    b_thresh = pcv.threshold.otsu(b_shrp, 255, object_type='dark')

    # Create and apply mask
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    filled = pcv.fill_holes(bs)
    masked = pcv.apply_mask(img=img, mask=filled, mask_color='white')

    # Extract colour channels from masked image
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=140,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Produce and apply a mask
    opened_ab = pcv.opening(gray_img=ab)
    ab_fill = pcv.fill(bin_img=ab, size=200)
    closed_ab = pcv.closing(gray_img=ab_fill)
    masked2 = pcv.apply_mask(img=masked, mask=bs, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define region of interest (ROI)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=250,
                                            y=100,
                                            h=200,
                                            w=200)

    # Decide what objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Analyze the plant
    analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)
    top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)

    # Print results of the analysis
    pcv.print_results(filename=args.result)
    pcv.output_mask(img,
                    kept_mask,
                    filename,
                    outdir=args.outdir,
                    mask_only=True)
def main():

    # Set variables
    args = options()
    pcv.params.debug = args.debug

    # Read and rotate image
    img, path, filename = pcv.readimage(filename=args.image)
    img = pcv.rotate(img, -90, False)

    # Create mask from LAB b channel
    l = pcv.rgb2gray_lab(rgb_img=img, channel='b')
    l_thresh = pcv.threshold.binary(gray_img=l,
                                    threshold=115,
                                    max_value=255,
                                    object_type='dark')
    l_mblur = pcv.median_blur(gray_img=l_thresh, ksize=5)

    # Apply mask to image
    masked = pcv.apply_mask(img=img, mask=l_mblur, mask_color='white')
    ab_fill = pcv.fill(bin_img=l_mblur, size=50)

    # Extract plant object from image
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=ab_fill)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked,
                                            x=150,
                                            y=270,
                                            h=100,
                                            w=100)
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    # Analyze shape properties
    analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    boundary_image2 = pcv.analyze_bound_horizontal(img=img,
                                                   obj=obj,
                                                   mask=mask,
                                                   line_position=370)

    # Analyze colour properties
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')

    # Analyze shape independent of size
    top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)
    top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)

    # Print results
    pcv.print_results(filename='{}'.format(args.result))
    pcv.print_image(img=color_histogram,
                    filename='{}_color_hist.jpg'.format(args.outdir))
    pcv.print_image(img=kept_mask, filename='{}_mask.jpg'.format(args.outdir))
def main():
    # Initialize options
    args = options()
    # Set PlantCV debug mode to input debug method
    pcv.params.debug = args.debug

    # Use PlantCV to read in the input image. The function outputs an image as a NumPy array, the path to the file,
    # and the image filename
    img, path, filename = pcv.readimage(filename=args.image)

    # ## Segmentation

    # ### Saturation channel
    # Convert the RGB image to HSV colorspace and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Use a binary threshold to set an inflection value where all pixels in the grayscale saturation image below the
    # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white)
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=80, max_value=255, object_type='light')

    # ### Blue-yellow channel
    # Convert the RGB image to LAB colorspace and extract the blue-yellow channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Use a binary threshold to set an inflection value where all pixels in the grayscale blue-yellow image below the
    # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white)
    b_thresh = pcv.threshold.binary(gray_img=b, threshold=134, max_value=255, object_type='light')

    # ### Green-magenta channel
    # Convert the RGB image to LAB colorspace and extract the green-magenta channel
    a = pcv.rgb2gray_lab(rgb_img=img, channel='a')

    # In the green-magenta image the plant pixels are darker than the background. Setting object_type="dark" will
    # invert the image first and then use a binary threshold to set an inflection value where all pixels in the
    # grayscale green-magenta image below the threshold get set to zero (pure black) and all pixels at or above the
    # threshold get set to 255 (pure white)
    a_thresh = pcv.threshold.binary(gray_img=a, threshold=122, max_value=255, object_type='dark')

    # Combine the binary images for the saturation and blue-yellow channels. The "or" operator returns a binary image
    # that is white when a pixel was white in either or both input images
    bs = pcv.logical_or(bin_img1=s_thresh, bin_img2=b_thresh)

    # Combine the binary images for the combined saturation and blue-yellow channels and the green-magenta channel.
    # The "or" operator returns a binary image that is white when a pixel was white in either or both input images
    bsa = pcv.logical_or(bin_img1=bs, bin_img2=a_thresh)

    # The combined binary image labels plant pixels well but the background still has pixels labeled as foreground.
    # Small white noise (salt) in the background can be removed by filtering white objects in the image by size and
    # setting a size threshold where smaller objects can be removed
    bsa_fill1 = pcv.fill(bin_img=bsa, size=15)  # Fill small noise

    # Before more stringent size filtering is done we want to connect plant parts that may still be disconnected from
    # the main plant. Use a dilation to expand the boundary of white regions. Ksize is the size of a box scanned
    # across the image and i is the number of times a scan is done
    bsa_fill2 = pcv.dilate(gray_img=bsa_fill1, ksize=3, i=3)

    # Remove small objects by size again but use a higher threshold
    bsa_fill3 = pcv.fill(bin_img=bsa_fill2, size=250)

    # Use the binary image to identify objects or connected components.
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=bsa_fill3)

    # Because the background still contains pixels labeled as foreground, the object list contains background.
    # Because these images were collected in an automated system the plant is always centered in the image at the
    # same position each time. Define a region of interest (ROI) to set the area where we expect to find plant
    # pixels. PlantCV can make simple ROI shapes like rectangles, circles, etc. but here we use a custom ROI to fit a
    # polygon around the plant area
    roi_custom, roi_hier_custom = pcv.roi.custom(img=img, vertices=[[1085, 1560], [1395, 1560], [1395, 1685],
                                                                    [1890, 1744], [1890, 25], [600, 25], [615, 1744],
                                                                    [1085, 1685]])

    # Use the ROI to filter out objects found outside the ROI. When `roi_type = "cutto"` objects outside the ROI are
    # cropped out. The default `roi_type` is "partial" which allows objects to overlap the ROI and be retained
    roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi_custom,
                                                                  roi_hierarchy=roi_hier_custom,
                                                                  object_contour=id_objects,
                                                                  obj_hierarchy=obj_hierarchy, roi_type='cutto')

    # Filter remaining objects by size again to remove any remaining background objects
    filled_mask1 = pcv.fill(bin_img=kept_mask, size=350)

    # Use a closing operation to first dilate (expand) and then erode (shrink) the plant to fill in any additional
    # gaps in leaves or stems
    filled_mask2 = pcv.closing(gray_img=filled_mask1)

    # Remove holes or dark spot noise (pepper) in the plant binary image
    filled_mask3 = pcv.fill_holes(filled_mask2)

    # With the clean binary image identify the contour of the plant
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=filled_mask3)

    # Because a plant or object of interest may be composed of multiple contours, it is required to combine all
    # remaining contours into a single contour before measurements can be done
    obj, mask = pcv.object_composition(img=img, contours=id_objects, hierarchy=obj_hierarchy)

    # ## Measurements PlantCV has several built-in measurement or analysis methods. Here, basic measurements of size
    # and shape are done. Additional typical modules would include plant height (`pcv.analyze_bound_horizontal`) and
    # color (`pcv.analyze_color`)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Save the shape image if requested
    if args.writeimg:
        outfile = os.path.join(args.outdir, filename[:-4] + "_shapes.png")
        pcv.print_image(img=shape_img, filename=outfile)

    # ## Morphology workflow

    # Update a few PlantCV parameters for plotting purposes
    pcv.params.text_size = 1.5
    pcv.params.text_thickness = 5
    pcv.params.line_thickness = 15

    # Convert the plant mask into a "skeletonized" image where each path along the stem and leaves are a single pixel
    # wide
    skel = pcv.morphology.skeletonize(mask=mask)

    # Sometimes wide parts of leaves or stems are skeletonized in the direction perpendicular to the main path. These
    # "barbs" or "spurs" can be removed by pruning the skeleton to remove small paths. Pruning will also separate the
    # individual path segments (leaves and stem parts)
    pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=skel, size=30, mask=mask)
    pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=pruned, size=3, mask=mask)

    # Leaf and stem segments above are separated but only into individual paths. We can sort the segments into stem
    # and leaf paths by identifying primary segments (stems; those that end in a branch point) and secondary segments
    # (leaves; those that begin at a branch point and end at a tip point)
    leaf_objects, other_objects = pcv.morphology.segment_sort(skel_img=pruned, objects=segment_objects, mask=mask)

    # Label the segment unique IDs
    segmented_img, labeled_id_img = pcv.morphology.segment_id(skel_img=pruned, objects=leaf_objects, mask=mask)

    # Measure leaf insertion angles. Measures the angle between a line fit through the stem paths and a line fit
    # through the first `size` points of each leaf path
    labeled_angle_img = pcv.morphology.segment_insertion_angle(skel_img=pruned, segmented_img=segmented_img,
                                                               leaf_objects=leaf_objects, stem_objects=other_objects,
                                                               size=22)

    # Save leaf angle image if requested
    if args.writeimg:
        outfile = os.path.join(args.outdir, filename[:-4] + "_leaf_insertion_angles.png")
        pcv.print_image(img=labeled_angle_img, filename=outfile)

    # ## Other potential morphological measurements There are many other functions that extract data from within the
    # morphology sub-package of PlantCV. For our purposes, we are most interested in the relative angle between each
    # leaf and the stem which we measure with `plantcv.morphology.segment_insertion_angle`. However, the following
    # cells show some of the other traits that we are able to measure from images that can be succesfully sorted into
    # primary and secondary segments.

    # Segment the plant binary mask using the leaf and stem segments. Allows for the measurement of individual leaf
    # areas
    # filled_img = pcv.morphology.fill_segments(mask=mask, objects=leaf_objects)

    # Measure the path length of each leaf (geodesic distance)
    # labeled_img2 = pcv.morphology.segment_path_length(segmented_img=segmented_img, objects=leaf_objects)

    # Measure the straight-line, branch point to tip distance (Euclidean) for each leaf
    # labeled_img3 = pcv.morphology.segment_euclidean_length(segmented_img=segmented_img, objects=leaf_objects)

    # Measure the curvature of each leaf (Values closer to 1 indicate that a segment is a straight line while larger
    # values indicate the segment has more curvature)
    # labeled_img4 = pcv.morphology.segment_curvature(segmented_img=segmented_img, objects=leaf_objects)

    # Measure absolute leaf angles (angle of linear regression line fit to each leaf object) Note: negative values
    # signify leaves to the left of the stem, positive values signify leaves to the right of the stem
    # labeled_img5 = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=leaf_objects)

    # Measure leaf curvature in degrees
    # labeled_img6 = pcv.morphology.segment_tangent_angle(segmented_img=segmented_img, objects=leaf_objects, size=35)

    # Measure stem characteristics like stem angle and length
    # stem_img = pcv.morphology.analyze_stem(rgb_img=img, stem_objects=other_objects)

    # Remove unneeded observations (hack)
    _ = pcv.outputs.observations.pop("tips")
    _ = pcv.outputs.observations.pop("branch_pts")
    angles = pcv.outputs.observations["segment_insertion_angle"]["value"]
    remove_indices = []
    for i, value in enumerate(angles):
        if value == "NA":
            remove_indices.append(i)
    remove_indices.sort(reverse=True)
    for i in remove_indices:
        _ = pcv.outputs.observations["segment_insertion_angle"]["value"].pop(i)

    # ## Save the results out to file for downsteam analysis
    pcv.print_results(filename=args.result)
Exemple #5
0
                                                         obj=obj,
                                                         mask=mask)

# In[28]:

top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                         obj=obj,
                                                         mask=mask)

# In[29]:

# The print_results function will take the measurements stored when running any (or all) of these functions, format,
# and print an output text file for data analysis. The Outputs class stores data whenever any of the following functions
# are ran: analyze_bound_horizontal, analyze_bound_vertical, analyze_color, analyze_nir_intensity, analyze_object,
# fluor_fvfm, report_size_marker_area, watershed. If no functions have been run, it will print an empty text file
pcv.print_results(filename='upload/Results/VIS_results.txt')

# In[30]:

# Python program to convert text
# file to JSON

import json

# the file to be converted to
# json format
filename = 'upload/Results/VIS_results.txt'

# dictionary where the lines from
# text will be stored
dict1 = {}
def main():
    # Get options
    args = options()

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read metadata
    with open(args.metadata, 'r', encoding='utf-8') as f:
        md = json.load(f)

    camera_label = md['camera_label']

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    # Convert RGB to HSV and extract the value channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='v')

    # Threshold the saturation image removing highs and lows and join
    s_thresh_1 = pcv.threshold.binary(gray_img=s,
                                      threshold=10,
                                      max_value=255,
                                      object_type='light')
    s_thresh_2 = pcv.threshold.binary(gray_img=s,
                                      threshold=245,
                                      max_value=255,
                                      object_type='dark')
    s_thresh = pcv.logical_and(bin_img1=s_thresh_1, bin_img2=s_thresh_2)

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_cnt = pcv.threshold.binary(gray_img=b,
                                 threshold=128,
                                 max_value=255,
                                 object_type='light')

    # Fill small objects
    b_fill = pcv.fill(b_cnt, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_fill)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(rgb_img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    # Threshold the green-magenta and blue images

    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=127,
                                          max_value=255,
                                          object_type='dark')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    # Threshold the green-magenta and blue images
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI

    W = 2472
    H = 3296

    if "far" in camera_label:
        # SIDE FAR
        w = 1600
        h = 1200
        pot = 230  #340
        roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                                x=(W - w) / 2,
                                                y=(H - h - pot),
                                                h=h,
                                                w=w)
    elif "lower" in camera_label:
        # SIDE LOWER
        w = 800
        h = 2400
        pot = 340
        roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                                x=1000 - w / 2,
                                                y=(H - h - pot),
                                                h=h,
                                                w=w)
    elif "upper" in camera_label:
        # SIDE UPPER
        w = 600
        h = 800
        pot = 550
        roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                                x=1400 - w / 2,
                                                y=(H - h - pot),
                                                h=h,
                                                w=w)
    elif "top" in camera_label:
        # TOP
        w = 450
        h = 450
        roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                                x=(H - h) / 2,
                                                y=(W - w) / 2,
                                                h=h,
                                                w=w)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    #TODO: Update for plantCV metadata import
    for key in md.keys():
        if str(md[key]).isdigit():
            pcv.outputs.add_observation(variable=key,
                                        trait=key,
                                        method='',
                                        scale='',
                                        datatype=int,
                                        value=md[key],
                                        label='')
        else:
            pcv.outputs.add_observation(variable=key,
                                        trait=key,
                                        method='',
                                        scale='',
                                        datatype=str,
                                        value=md[key],
                                        label='')

    if obj is not None:

        # Find shape properties, output shape image (optional)
        shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask)

        # Shape properties relative to user boundary line (optional)
        #boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680)

        # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)
        color_histogram = pcv.analyze_color(rgb_img=img,
                                            mask=kept_mask,
                                            hist_plot_type='all')

        # Pseudocolor the grayscale image
        #pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s, mask=kept_mask, cmap='jet')

        #print(pcv.outputs.images)
        if args.writeimg == True:
            for idx, item in enumerate(pcv.outputs.images[0]):
                pcv.print_image(item,
                                "{}_{}.png".format(args.result[:-5], idx))

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
def silhouette_top():
    "First we draw the picture from the 3D data"
    ########################################################################################################################################################################
    x = []
    y = []
    z = []
    image_top = Image.new("RGB", (width, height), color='white')
    draw = ImageDraw.Draw(image_top)
    data_3d = open(args.image, "r")
    orignal_file = args.image
    for line in data_3d:
        line = line.split(",")
        y.append(int(line[0]))
        x.append(int(line[1]))
        z.append(int(line[2]))

    i = 0
    for point_x in x:
        point_y = y[i]
        draw.rectangle([point_x, point_y, point_x + 1, point_y + 1],
                       fill="black")
        #rectange takes input [x0, y0, x1, y1]
        i += 1
    image_top.save("top_temp.png")

    image_side = Image.new("RGB", (1280, 960), color='white')
    draw = ImageDraw.Draw(image_side)
    i = 0
    for point_y in y:
        point_z = z[i]
        draw.rectangle([point_z, point_y, point_z + 1, point_y + 1],
                       fill="black")
        #rectange takes input [x0, y0, x1, y1]
        i += 1
    image_side.save("side_temp.png")
    ########################################################################################################################################################################

    args.image = "top_temp.png"
    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')
    v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v,
                                                         lower_thresh=[0],
                                                         upper_thresh=[200],
                                                         channel='gray')

    id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image,
                                                 mask=v_thresh)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image,
                                            x=0,
                                            y=0,
                                            h=height,
                                            w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    outfile = args.outdir + "/" + filename

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "_top_boundary.png")

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "_top_shape.png")

    new_im.save("output//" + args.filename + "shape_img.png")
    GT = re.sub(pattern, replacement, files_names[file_counter])
    pcv.outputs.add_observation(variable="genotype",
                                trait="genotype",
                                method="Regexed from the filename",
                                scale=None,
                                datatype=str,
                                value=int(GT),
                                label="GT")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
    ##########################################################################################################################################

    args.image = "side_temp.png"
    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')
    v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v,
                                                         lower_thresh=[0],
                                                         upper_thresh=[200],
                                                         channel='gray')

    id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image,
                                                 mask=v_thresh)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image,
                                            x=0,
                                            y=0,
                                            h=height,
                                            w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    outfile = args.outdir + "/" + filename

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "_side_boundary.png")

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "_side_shape.png")

    GT = re.sub(pattern, replacement, files_names[file_counter])
    pcv.outputs.add_observation(variable="genotype",
                                trait="genotype",
                                method="Regexed from the filename",
                                scale=None,
                                datatype=str,
                                value=int(GT),
                                label="GT")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result_side)
Exemple #8
0
                                                         obj=obj,
                                                         mask=mask)

# In[86]:

top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                         obj=obj,
                                                         mask=mask)

# In[87]:

# The print_results function will take the measurements stored when running any (or all) of these functions, format,
# and print an output text file for data analysis. The Outputs class stores data whenever any of the following functions
# are ran: analyze_bound_horizontal, analyze_bound_vertical, analyze_color, analyze_nir_intensity, analyze_object,
# fluor_fvfm, report_size_marker_area, watershed. If no functions have been run, it will print an empty text file
pcv.print_results(filename='upload/Results1/NIR_results.txt')

# In[88]:

# Python program to convert text
# file to JSON

import json

# the file to be converted to
# json format
filename = 'upload/Results1/NIR_results.txt'

# dictionary where the lines from
# text will be stored
dict1 = {}
def main():
    # Get options
    args = options()

    if args.debug:
        pcv.params.debug = args.debug  # set debug mode
        if args.debugdir:
            pcv.params.debug_outdir = args.debugdir  # set debug directory
            os.makedirs(args.debugdir, exist_ok=True)

    # pixel_resolution
    # mm
    # see pixel_resolution.xlsx for calibration curve for pixel to mm translation
    pixelresolution = 0.052

    # The result file should exist if plantcv-workflow.py was run
    if os.path.exists(args.result):
        # Open the result file
        results = open(args.result, "r")
        # The result file would have image metadata in it from plantcv-workflow.py, read it into memory
        metadata = json.load(results)
        # Close the file
        results.close()
        # Delete the file, we will create new ones
        os.remove(args.result)
        plantbarcode = metadata['metadata']['plantbarcode']['value']
        print(plantbarcode,
              metadata['metadata']['timestamp']['value'],
              sep=' - ')

    else:
        # If the file did not exist (for testing), initialize metadata as an empty string
        metadata = "{}"
        regpat = re.compile(args.regex)
        plantbarcode = re.search(regpat, args.image).groups()[0]

    # read images and create mask
    img, _, fn = pcv.readimage(args.image)
    imagename = os.path.splitext(fn)[0]

    # create mask

    # taf=filters.try_all_threshold(s_img)
    ## remove background
    s_img = pcv.rgb2gray_hsv(img, 's')
    min_s = filters.threshold_minimum(s_img)
    thresh_s = pcv.threshold.binary(s_img, min_s, 255, 'light')
    rm_bkgrd = pcv.fill_holes(thresh_s)

    ## low greenness
    thresh_s = pcv.threshold.binary(s_img, min_s + 15, 255, 'dark')
    # taf = filters.try_all_threshold(s_img)
    c = pcv.logical_xor(rm_bkgrd, thresh_s)
    cinv = pcv.invert(c)
    cinv_f = pcv.fill(cinv, 500)
    cinv_f_c = pcv.closing(cinv_f, np.ones((5, 5)))
    cinv_f_c_e = pcv.erode(cinv_f_c, 2, 1)

    ## high greenness
    a_img = pcv.rgb2gray_lab(img, channel='a')
    # taf = filters.try_all_threshold(a_img)
    t_a = filters.threshold_isodata(a_img)
    thresh_a = pcv.threshold.binary(a_img, t_a, 255, 'dark')
    thresh_a = pcv.closing(thresh_a, np.ones((5, 5)))
    thresh_a_f = pcv.fill(thresh_a, 500)
    ## combined mask
    lor = pcv.logical_or(cinv_f_c_e, thresh_a_f)
    close = pcv.closing(lor, np.ones((2, 2)))
    fill = pcv.fill(close, 800)
    erode = pcv.erode(fill, 3, 1)
    fill2 = pcv.fill(erode, 1200)
    # dilate = pcv.dilate(fill2,2,2)
    mask = fill2

    final_mask = np.zeros_like(mask)

    # Compute greenness
    # split color channels
    b, g, r = cv2.split(img)
    # print green intensity
    # g_img = pcv.visualize.pseudocolor(g, cmap='Greens', background='white', min_value=0, max_value=255, mask=mask, axes=False)

    # convert color channels to int16 so we can add them (values will be greater than 255 which is max of current uint8 format)
    g = g.astype('uint16')
    r = r.astype('uint16')
    b = b.astype('uint16')
    denom = g + r + b

    # greenness index
    out_flt = np.zeros_like(denom, dtype='float32')
    # divide green by sum of channels to compute greenness index with values 0-1
    gi = np.divide(g,
                   denom,
                   out=out_flt,
                   where=np.logical_and(denom != 0, mask > 0))

    # find objects
    c, h = pcv.find_objects(img, mask)
    rc, rh = pcv.roi.multi(img, coord=[(1300, 900), (1300, 2400)], radius=350)
    # Turn off debug temporarily, otherwise there will be a lot of plots
    pcv.params.debug = None
    # Loop over each region of interest
    i = 0
    rc_i = rc[i]
    for i, rc_i in enumerate(rc):
        rh_i = rh[i]

        # Add ROI number to output. Before roi_objects so result has NA if no object.
        pcv.outputs.add_observation(variable='roi',
                                    trait='roi',
                                    method='roi',
                                    scale='int',
                                    datatype=int,
                                    value=i,
                                    label='#')

        roi_obj, hierarchy_obj, submask, obj_area = pcv.roi_objects(
            img,
            roi_contour=rc_i,
            roi_hierarchy=rh_i,
            object_contour=c,
            obj_hierarchy=h,
            roi_type='partial')

        if obj_area == 0:

            print('\t!!! No object found in ROI', str(i))
            pcv.outputs.add_observation(
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=pixelresolution,
                datatype="<class 'float'>",
                value=0,
                label='sq mm')

        else:

            # Combine multiple objects
            # ple plant objects within an roi together
            plant_object, plant_mask = pcv.object_composition(
                img=img, contours=roi_obj, hierarchy=hierarchy_obj)

            final_mask = pcv.image_add(final_mask, plant_mask)

            # Save greenness for individual ROI
            grnindex = np.mean(gi[np.where(plant_mask > 0)])
            pcv.outputs.add_observation(
                variable='greenness_index',
                trait='mean normalized greenness index',
                method='g/sum(b+g+r)',
                scale='[0,1]',
                datatype="<class 'float'>",
                value=float(grnindex),
                label='/1')

            # Analyze all colors
            hist = pcv.analyze_color(img, plant_mask, 'all')

            # Analyze the shape of the current plant
            shape_img = pcv.analyze_object(img, plant_object, plant_mask)
            plant_area = pcv.outputs.observations['area'][
                'value'] * pixelresolution**2
            pcv.outputs.add_observation(
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=pixelresolution,
                datatype="<class 'float'>",
                value=plant_area,
                label='sq mm')

        # end if-else

        # At this point we have observations for one plant
        # We can write these out to a unique results file
        # Here I will name the results file with the ROI ID combined with the original result filename
        basename, ext = os.path.splitext(args.result)
        filename = basename + "-roi" + str(i) + ext
        # Save the existing metadata to the new file
        with open(filename, "w") as r:
            json.dump(metadata, r)
        pcv.print_results(filename=filename)
        # The results are saved, now clear out the observations so the next loop adds new ones for the next plant
        pcv.outputs.clear()

        if args.writeimg and obj_area != 0:
            imgdir = os.path.join(args.outdir, 'shape_images', plantbarcode)
            os.makedirs(imgdir, exist_ok=True)
            pcv.print_image(
                shape_img,
                os.path.join(imgdir,
                             imagename + '-roi' + str(i) + '-shape.png'))

            imgdir = os.path.join(args.outdir, 'colorhist_images',
                                  plantbarcode)
            os.makedirs(imgdir, exist_ok=True)
            pcv.print_image(
                hist,
                os.path.join(imgdir,
                             imagename + '-roi' + str(i) + '-colorhist.png'))

# end roi loop

    if args.writeimg:
        # save grnness image of entire tray
        imgdir = os.path.join(args.outdir, 'pseudocolor_images', plantbarcode)
        os.makedirs(imgdir, exist_ok=True)
        gi_img = pcv.visualize.pseudocolor(gi,
                                           obj=None,
                                           mask=final_mask,
                                           cmap='viridis',
                                           axes=False,
                                           min_value=0.3,
                                           max_value=0.6,
                                           background='black',
                                           obj_padding=0)
        gi_img = add_scalebar(gi_img,
                              pixelresolution=pixelresolution,
                              barwidth=20,
                              barlocation='lower left')
        gi_img.set_size_inches(6, 6, forward=False)
        gi_img.savefig(os.path.join(imgdir, imagename + '-greenness.png'),
                       bbox_inches='tight')
        gi_img.clf()
def main():

    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    img, path, filename = pcv.readimage(filename=args.image, mode='rgb')

    ### SELECTING THE PLANT

    ### Attempt 5 combineren
    # Parameters
    hue_lower_tresh = 22  # 24
    hue_higher_tresh = 50  # 50
    saturation_lower_tresh = 138  # 140
    saturation_higher_tresh = 230  # 230
    value_lower_tresh = 120  # 125
    value_higher_tresh = 255  # 255
    # RGB color space
    green_lower_tresh = 105  # 110
    green_higher_tresh = 255  # 255
    red_lower_tresh = 22  # 24
    red_higher_thresh = 98  # 98
    blue_lower_tresh = 85  # 85
    blue_higher_tresh = 253  # 255
    # CIELAB color space
    #lab_blue_lower_tresh = 0            # Blue yellow channel
    #lab_blue_higher_tresh = 255

    s = pcv.rgb2gray_hsv(rgb_img=img, channel='h')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[hue_lower_tresh],
        upper_thresh=[hue_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=img, mask=mask, mask_color='white')
    # Filtered on Hue
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='s')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[saturation_lower_tresh],
        upper_thresh=[saturation_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on saturation
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='v')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[value_lower_tresh],
        upper_thresh=[value_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on value
    mask, masked = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[0, green_lower_tresh, 0],
        upper_thresh=[255, green_higher_tresh, 255],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on green
    mask, masked = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[red_lower_tresh, 0, 0],
        upper_thresh=[red_higher_thresh, 255, 255],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on red
    mask_old, masked_old = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[0, 0, blue_lower_tresh],
        upper_thresh=[255, 255, blue_higher_tresh],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked_old,
                            mask=mask_old,
                            mask_color='white')
    #filtered on blue
    #b = pcv.rgb2gray_lab(rgb_img = masked, channel = 'b')   # Converting toe CIElab blue_yellow image
    #b_thresh =pcv.threshold.binary(gray_img = b, threshold=lab_blue_lower_tresh, max_value = lab_blue_higher_tresh)

    ###_____________________________________ Now to identify objects
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(
        gray_img=masked_a,
        threshold=125,  # original 115
        max_value=255,
        object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(
        gray_img=masked_a,
        threshold=140,  # original 135
        max_value=255,
        object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    # Inputs:
    #   bin_img - Binary image data
    #   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    ab = pcv.median_blur(gray_img=ab, ksize=3)
    ab_fill = pcv.fill(bin_img=ab, size=1000)
    #print("filled")
    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')
    # ID the objects
    id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill)
    # Let's just take the largest
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=0,
                                            y=0,
                                            h=960,
                                            w=1280)  # Currently hardcoded

    # Decide which objects to keep
    # Inputs:
    #    img            = img to display kept objects
    #    roi_contour    = contour of roi, output from any ROI function
    #    roi_hierarchy  = contour of roi, output from any ROI function
    #    object_contour = contours of objects, output from pcv.find_objects function
    #    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
    #    roi_type       = 'partial' (default, for partially inside), 'cutto', or
    #    'largest' (keep only largest contour)
    with HiddenPrints():
        roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
            img=img,
            roi_contour=roi1,
            roi_hierarchy=roi_hierarchy,
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy,
            roi_type='partial')
    # Object combine kept objects
    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   contours - Contour list
    #   hierarchy - Contour hierarchy array
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    #print("final plant")
    new_im = Image.fromarray(masked2)
    new_im.save("output//" + args.filename + "last_masked.png")

    ##################_________________ Analysis

    outfile = args.outdir + "/" + filename
    # Here come all the analyse functions.
    # pcv.acute_vertex(img, obj, 30, 15, 100)

    color_img = pcv.analyze_color(rgb_img=img,
                                  mask=kept_mask,
                                  hist_plot_type=None)
    #new_im = Image.fromarray(color_img)
    #new_im.save(args.filename + "color_img.png")

    # Find shape properties, output shape image (optional)

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "shape_img.png")
    # Shape properties relative to user boundary line (optional)

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj - Single or grouped contour object
    #   mask - Binary mask of selected contours
    #   line_position - Position of boundary line (a value of 0 would draw a line
    #                   through the bottom of the image)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "boundary_img.png")
    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)

    # Inputs:
    #   rgb_img - RGB image data
    #   mask - Binary mask of selected contours
    #   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
    #                    This is the data to be printed to the SVG histogram file
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    #new_im = Image.fromarray(color_histogram)
    #new_im.save(args.filename + "color_histogram_img.png")

    # Pseudocolor the grayscale image

    # Inputs:
    #     gray_img - Grayscale image data
    #     obj - Single or grouped contour object (optional), if provided the pseudocolored image gets
    #           cropped down to the region of interest.
    #     mask - Binary mask (optional)
    #     background - Background color/type. Options are "image" (gray_img, default), "white", or "black". A mask
    #                  must be supplied.
    #     cmap - Colormap
    #     min_value - Minimum value for range of interest
    #     max_value - Maximum value for range of interest
    #     dpi - Dots per inch for image if printed out (optional, if dpi=None then the default is set to 100 dpi).
    #     axes - If False then the title, x-axis, and y-axis won't be displayed (default axes=True).
    #     colorbar - If False then the colorbar won't be displayed (default colorbar=True)
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s,
                                                  mask=kept_mask,
                                                  cmap='jet')
    #new_im = Image.fromarray(pseudocolored_img)
    #new_im.save(args.filename + "pseudocolored.png")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
Exemple #11
0
def main():
    # Get options
    args = options()

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s,
                                    threshold=85,
                                    max_value=255,
                                    object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(gray_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b,
                                    threshold=160,
                                    max_value=255,
                                    object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b,
                                 threshold=160,
                                 max_value=255,
                                 object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(rgb_img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=135,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=100,
                                            y=100,
                                            h=200,
                                            w=200)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Find shape properties, output shape image (optional)
    shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)

    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')

    # Pseudocolor the grayscale image
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s,
                                                  mask=kept_mask,
                                                  cmap='jet')

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
def main_side():
    # Setting "args"

    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    filename = args.image
    img = cv2.imread(args.image, flags=0)
    #img = pcv.invert(img)
    path, img_name = os.path.split(args.image)
    img_bkgrd = cv2.imread("background.png", flags=0)
    #print(img)
    #print(img_bkgrd)
    bkg_sub_img = pcv.image_subtract(img_bkgrd, img)
    bkg_sub_thres_img, masked_img = pcv.threshold.custom_range(
        rgb_img=bkg_sub_img,
        lower_thresh=[50],
        upper_thresh=[255],
        channel='gray')
    # Laplace filtering (identify edges based on 2nd derivative)

    # Inputs:
    #   gray_img - Grayscale image data
    #   ksize - Aperture size used to calculate the second derivative filter,
    #           specifies the size of the kernel (must be an odd integer)
    #   scale - Scaling factor applied (multiplied) to computed Laplacian values
    #           (scale = 1 is unscaled)
    lp_img = pcv.laplace_filter(gray_img=img, ksize=1, scale=1)

    # Plot histogram of grayscale values
    pcv.visualize.histogram(gray_img=lp_img)

    # Lapacian image sharpening, this step will enhance the darkness of the edges detected
    lp_shrp_img = pcv.image_subtract(gray_img1=img, gray_img2=lp_img)

    # Plot histogram of grayscale values, this helps to determine thresholding value
    pcv.visualize.histogram(gray_img=lp_shrp_img)
    # Sobel filtering
    # 1st derivative sobel filtering along horizontal axis, kernel = 1)

    # Inputs:
    #   gray_img - Grayscale image data
    #   dx - Derivative of x to analyze
    #   dy - Derivative of y to analyze
    #   ksize - Aperture size used to calculate 2nd derivative, specifies the size of the kernel and must be an odd integer
    # NOTE: Aperture size must be greater than the largest derivative (ksize > dx & ksize > dy)
    sbx_img = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1)

    # 1st derivative sobel filtering along vertical axis, kernel = 1)
    sby_img = pcv.sobel_filter(gray_img=img, dx=0, dy=1, ksize=1)

    # Combine the effects of both x and y filters through matrix addition
    # This will capture edges identified within each plane and emphasize edges found in both images

    # Inputs:
    #   gray_img1 - Grayscale image data to be added to gray_img2
    #   gray_img2 - Grayscale image data to be added to gray_img1
    sb_img = pcv.image_add(gray_img1=sbx_img, gray_img2=sby_img)

    # Use a lowpass (blurring) filter to smooth sobel image

    # Inputs:
    #   gray_img - Grayscale image data
    #   ksize - Kernel size (integer or tuple), (ksize, ksize) box if integer input,
    #           (n, m) box if tuple input
    mblur_img = pcv.median_blur(gray_img=sb_img, ksize=1)

    # Inputs:
    #   gray_img - Grayscale image data
    mblur_invert_img = pcv.invert(gray_img=mblur_img)

    # combine the smoothed sobel image with the laplacian sharpened image
    # combines the best features of both methods as described in "Digital Image Processing" by Gonzalez and Woods pg. 169
    edge_shrp_img = pcv.image_add(gray_img1=mblur_invert_img,
                                  gray_img2=lp_shrp_img)

    # Perform thresholding to generate a binary image
    tr_es_img = pcv.threshold.binary(gray_img=edge_shrp_img,
                                     threshold=145,
                                     max_value=255,
                                     object_type='dark')

    # Do erosion with a 3x3 kernel (ksize=3)

    # Inputs:
    #   gray_img - Grayscale (usually binary) image data
    #   ksize - The size used to build a ksize x ksize
    #            matrix using np.ones. Must be greater than 1 to have an effect
    #   i - An integer for the number of iterations
    e1_img = pcv.erode(gray_img=tr_es_img, ksize=3, i=1)
    # Bring the two object identification approaches together.
    # Using a logical OR combine object identified by background subtraction and the object identified by derivative filter.

    # Inputs:
    #   bin_img1 - Binary image data to be compared in bin_img2
    #   bin_img2 - Binary image data to be compared in bin_img1
    comb_img = pcv.logical_or(bin_img1=e1_img, bin_img2=bkg_sub_thres_img)

    # Get masked image, Essentially identify pixels corresponding to plant and keep those.

    # Inputs:
    #   rgb_img - RGB image data
    #   mask - Binary mask image data
    #   mask_color - 'black' or 'white'
    masked_erd = pcv.apply_mask(rgb_img=img, mask=comb_img, mask_color='black')

    # Need to remove the edges of the image, we did that by generating a set of rectangles to mask the edges
    # img is (1280 X 960)
    # mask for the bottom of the image

    # Inputs:
    #   img - RGB or grayscale image data
    #   p1 - Point at the top left corner of the rectangle (tuple)
    #   p2 - Point at the bottom right corner of the rectangle (tuple)
    #   color 'black' (default), 'gray', or 'white'
    #
    masked1, box1_img, rect_contour1, hierarchy1 = pcv.rectangle_mask(img=img,
                                                                      p1=(500,
                                                                          875),
                                                                      p2=(720,
                                                                          960))
    # mask the edges
    masked2, box2_img, rect_contour2, hierarchy2 = pcv.rectangle_mask(img=img,
                                                                      p1=(1,
                                                                          1),
                                                                      p2=(1279,
                                                                          959))
    bx12_img = pcv.logical_or(bin_img1=box1_img, bin_img2=box2_img)
    inv_bx1234_img = bx12_img  # we dont invert
    inv_bx1234_img = bx12_img
    #inv_bx1234_img = pcv.invert(gray_img=bx12_img)

    edge_masked_img = pcv.apply_mask(rgb_img=masked_erd,
                                     mask=inv_bx1234_img,
                                     mask_color='black')
    #print("here we create a mask")
    mask, masked = pcv.threshold.custom_range(rgb_img=edge_masked_img,
                                              lower_thresh=[25],
                                              upper_thresh=[175],
                                              channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #print("end")
    # Identify objects

    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   mask - Binary mask used for detecting contours
    id_objects, obj_hierarchy = pcv.find_objects(img=edge_masked_img,
                                                 mask=mask)

    # Define ROI

    # Inputs:
    #   img - RGB or grayscale image to plot the ROI on
    #   x - The x-coordinate of the upper left corner of the rectangle
    #   y - The y-coordinate of the upper left corner of the rectangle
    #   h - The height of the rectangle
    #   w - The width of the rectangle
    roi1, roi_hierarchy = pcv.roi.rectangle(img=edge_masked_img,
                                            x=100,
                                            y=100,
                                            h=800,
                                            w=1000)

    # Decide which objects to keep

    # Inputs:
    #    img            = img to display kept objects
    #    roi_contour    = contour of roi, output from any ROI function
    #    roi_hierarchy  = contour of roi, output from any ROI function
    #    object_contour = contours of objects, output from pcv.find_objects function
    #    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
    #    roi_type       = 'partial' (default, for partially inside), 'cutto', or
    #    'largest' (keep only largest contour)
    with HiddenPrints():
        roi_objects, hierarchy5, kept_mask, obj_area = pcv.roi_objects(
            img=edge_masked_img,
            roi_contour=roi1,
            roi_hierarchy=roi_hierarchy,
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy,
            roi_type='largest')

    rgb_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   contours - Contour list
    #   hierarchy - Contour hierarchy array
    o, m = pcv.object_composition(img=rgb_img,
                                  contours=roi_objects,
                                  hierarchy=hierarchy5)

    ### Analysis ###

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Perform signal analysis

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_img = pcv.analyze_object(img=img, obj=o, mask=m)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "shape_img_side.png")

    # Inputs:
    #   gray_img - 8 or 16-bit grayscale image data
    #   mask - Binary mask made from selected contours
    #   bins - Number of classes to divide the spectrum into
    #   histplot - If True, plots the histogram of intensity values
    nir_hist = pcv.analyze_nir_intensity(gray_img=img,
                                         mask=kept_mask,
                                         bins=256,
                                         histplot=True)

    # Pseudocolor the grayscale image to a colormap

    # Inputs:
    #     gray_img - Grayscale image data
    #     obj - Single or grouped contour object (optional), if provided the pseudocolored image gets cropped down to the region of interest.
    #     mask - Binary mask (optional)
    #     background - Background color/type. Options are "image" (gray_img), "white", or "black". A mask must be supplied.
    #     cmap - Colormap
    #     min_value - Minimum value for range of interest
    #     max_value - Maximum value for range of interest
    #     dpi - Dots per inch for image if printed out (optional, if dpi=None then the default is set to 100 dpi).
    #     axes - If False then the title, x-axis, and y-axis won't be displayed (default axes=True).
    #     colorbar - If False then the colorbar won't be displayed (default colorbar=True)
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=img,
                                                  mask=kept_mask,
                                                  cmap='viridis')

    # Perform shape analysis

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_imgs = pcv.analyze_object(img=rgb_img, obj=o, mask=m)

    # Write shape and nir data to results file
    pcv.print_results(filename=args.result)
def root():
    				uploaded_file = st.file_uploader("Choose an image...", type="jpg")
    				if uploaded_file is not None:
    					inp = Image.open(uploaded_file)
    					inp.save('input.jpg')
    					img, path, filename = pcv.readimage(filename='input.jpg')
    					image = Image.open('input.jpg')
    					st.image(image, caption='Original Image',use_column_width=True)
                    # Convert RGB to HSV and extract the saturation channel
    # Inputs:
    #   rgb_image - RGB image data 
    #   channel - Split by 'h' (hue), 's' (saturation), or 'v' (value) channel
					
    					s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    					pcv.print_image(s, "plant/rgbtohsv.png")
    					image = Image.open('plant/rgbtohsv.png')
    					st.image(image, caption='RGB to HSV', use_column_width=True)
    					s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light')
    					pcv.print_image(s_thresh, "plant/binary_threshold.png")
    					image = Image.open('plant/binary_threshold.png')
    					st.image(image, caption='Binary Threshold',use_column_width=True)
                   
    # Median Blur to clean noise 

    # Inputs: 
    #   gray_img - Grayscale image data 
    #   ksize - Kernel size (integer or tuple), (ksize, ksize) box if integer input,
    #           (n, m) box if tuple input 

    					s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    					pcv.print_image(s_mblur, "plant/Median_blur.png")
    					image = Image.open('plant/Median_blur.png')
    					st.image(image, caption='Median Blur',use_column_width=True)
                    
     # An alternative to using median_blur is gaussian_blur, which applies 
    # a gaussian blur filter to the image. Depending on the image, one 
    # technique may be more effective than others. 

    # Inputs:
    #   img - RGB or grayscale image data
    #   ksize - Tuple of kernel size
    #   sigma_x - Standard deviation in X direction; if 0 (default), 
    #            calculated from kernel size
    #   sigma_y - Standard deviation in Y direction; if sigmaY is 
    #            None (default), sigmaY is taken to equal sigmaX
                
    					gaussian_img = pcv.gaussian_blur(img=s_thresh, ksize=(5, 5), sigma_x=0, sigma_y=None)
    # Convert RGB to LAB and extract the blue channel ('b')

    # Input:
    #   rgb_img - RGB image data 
    #   channel- Split by 'l' (lightness), 'a' (green-magenta), or 'b' (blue-yellow) channel
    					b = pcv.rgb2gray_lab(rgb_img=img, channel='b')
    					b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, 
                                object_type='light')
                     # Join the threshold saturation and blue-yellow images with a logical or operation 

    # Inputs: 
    #   bin_img1 - Binary image data to be compared to bin_img2
    #   bin_img2 - Binary image data to be compared to bin_img1

    
    					bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    					pcv.print_image(bs, "plant/threshold comparison.png")
    					image = Image.open('plant/threshold comparison.png')
    					st.image(image, caption='Threshold Comparision',use_column_width=True)
                    
 # Appy Mask (for VIS images, mask_color='white')

    # Inputs:
    #   img - RGB or grayscale image data 
    #   mask - Binary mask image data 
    #   mask_color - 'white' or 'black' 
    
    					masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')
    					pcv.print_image(masked, "plant/Apply_mask.png")
    					image = Image.open('plant/Apply_mask.png')
    					st.image(image, caption='Applied Mask',use_column_width=True)
                   # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    					masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    					masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')
                     # Threshold the green-magenta and blue images
    					maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark')
    					maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135,max_value=255, object_type='light')
    					maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light')
    					pcv.print_image( maskeda_thresh, "plant/maskeda_thresh.png")
    					pcv.print_image(maskeda_thresh1, "plant/maskeda_thresh1.png")
    					pcv.print_image(maskedb_thresh, "plant/maskedb_thresh1.png")
  
    					image = Image.open('plant/maskeda_thresh.png')
    					st.image(image, caption='Threshold green-magneta and blue image',use_column_width=True)


   # Join the thresholded saturation and blue-yellow images (OR)
    					ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    					ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)
        # Opening filters out bright noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
    					opened_ab = pcv.opening(gray_img=ab)

# Depending on the situation it might be useful to use the 
# exclusive or (pcv.logical_xor) function. 

# Inputs: 
#   bin_img1 - Binary image data to be compared to bin_img2
#   bin_img2 - Binary image data to be compared to bin_img1
    					xor_img = pcv.logical_xor(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
# Fill small objects (reduce image noise) 

# Inputs: 
#   bin_img - Binary image data 
#   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    					ab_fill = pcv.fill(bin_img=ab, size=200)
# Closing filters out dark noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
    					closed_ab = pcv.closing(gray_img=ab_fill)
# Apply mask (for VIS images, mask_color=white)
    					masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')
# Identify objects
# Inputs: 
#   img - RGB or grayscale image data for plotting 
#   mask - Binary mask used for detecting contours 
    					id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)
# Define the region of interest (ROI) 
# Inputs: 
#   img - RGB or grayscale image to plot the ROI on 
#   x - The x-coordinate of the upper left corner of the rectangle 
#   y - The y-coordinate of the upper left corner of the rectangle 
#   h - The height of the rectangle 
#   w - The width of the rectangle 
    					roi1, roi_hierarchy= pcv.roi.rectangle(img=masked2, x=50, y=50, h=100, w=100)
# Decide which objects to keep
# Inputs:
#    img            = img to display kept objects
#    roi_contour    = contour of roi, output from any ROI function
#    roi_hierarchy  = contour of roi, output from any ROI function
#    object_contour = contours of objects, output from pcv.find_objects function
#    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
#    roi_type       = 'partial' (default, for partially inside the ROI), 'cutto', or 
#                     'largest' (keep only largest contour)
    					roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, 
                                                               roi_hierarchy=roi_hierarchy, 
                                                               object_contour=id_objects, 
                                                               obj_hierarchy=obj_hierarchy,
                                                               roi_type='partial')
# Object combine kept objects
# Inputs:
#   img - RGB or grayscale image data for plotting 
#   contours - Contour list 
#   hierarchy - Contour hierarchy array 
    					obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)
############### Analysis ################ 
# Find shape properties, data gets stored to an Outputs class automatically
# Inputs:
#   img - RGB or grayscale image data 
#   obj- Single or grouped contour object
#   mask - Binary image mask to use as mask for moments analysis 
    					analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    					pcv.print_image(analysis_image, "plant/analysis_image.png")
    					image = Image.open('plant/analysis_image.png')
    					st.image(image, caption='Analysis_image',use_column_width=True)
# Shape properties relative to user boundary line (optional)
# Inputs:
#   img - RGB or grayscale image data 
#   obj - Single or grouped contour object 
#   mask - Binary mask of selected contours 
#   line_position - Position of boundary line (a value of 0 would draw a line 
#                   through the bottom of the image) 
    					boundary_image2 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, 
                                               line_position=370)
    					pcv.print_image(boundary_image2, "plant/boundary_image2.png")
    					image = Image.open('plant/boundary_image2.png')
    					st.image(image, caption='Boundary Image',use_column_width=True)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
# Inputs:
#   rgb_img - RGB image data
#   mask - Binary mask of selected contours 
#   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
#                    This is the data to be printed to the SVG histogram file  
    					color_histogram = pcv.analyze_color(rgb_img=img, mask=kept_mask, hist_plot_type='all')
# Print the histogram out to save it 
    					pcv.print_image(img=color_histogram, filename="plant/vis_tutorial_color_hist.jpg")
    					image = Image.open('plant/vis_tutorial_color_hist.jpg')
    					st.image(image, caption='Color Histogram',use_column_width=True)
# Divide plant object into twenty equidistant bins and assign pseudolandmark points based upon their 
# actual (not scaled) position. Once this data is scaled this approach may provide some information 
# regarding shape independent of size.
# Inputs:
#   img - RGB or grayscale image data 
#   obj - Single or grouped contour object 
#   mask - Binary mask of selected contours 
    					top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img, obj=obj, mask=mask)
    					top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img, obj=obj, mask=mask)
# The print_results function will take the measurements stored when running any (or all) of these functions, format, 
# and print an output text file for data analysis. The Outputs class stores data whenever any of the following functions
# are ran: analyze_bound_horizontal, analyze_bound_vertical, analyze_color, analyze_nir_intensity, analyze_object, 
# fluor_fvfm, report_size_marker_area, watershed. If no functions have been run, it will print an empty text file 
    					pcv.print_results(filename='vis_tutorial_results.txt')
Exemple #14
0
def main():
    # Get options
    args = options()

    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (converting fmax and track to 8 bit just to create a mask, use 16-bit for all the math)
    fmax, path, filename = pcv.readimage(args.fmax)

    # Threshold the image
    mask = pcv.threshold.binary(gray_img=fmax,
                                threshold=20,
                                max_value=255,
                                object_type='light')
    mask = pcv.fill(mask, 100)

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=fmax, mask=mask)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=mask,
                                            x=180,
                                            y=90,
                                            h=200,
                                            w=200)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=mask,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')
    # Object combine kept objects
    obj, masked = pcv.object_composition(img=mask,
                                         contours=roi_objects,
                                         hierarchy=hierarchy3)

    ################ Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=mask, obj=obj, mask=masked)

    # Fluorescence Measurement (read in 16-bit images)
    fmin = cv2.imread(args.fmin, -1)
    fmax = cv2.imread(args.fmax, -1)

    fvfm_images = pcv.fluor_fvfm(fdark=np.zeros_like(fmax),
                                 fmin=fmin,
                                 fmax=fmax,
                                 mask=kept_mask,
                                 bins=256)

    # Store the two images
    fv_img = fvfm_images[0]
    fvfm_hist = fvfm_images[1]
    fvfm = np.divide(fv_img,
                     fmax,
                     out=np.zeros_like(fmax, dtype='float'),
                     where=np.logical_and(mask > 1, fmax > 0))

    # Pseudocolor the Fv/Fm grayscale image that is calculated inside the fluor_fvfm function
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=fvfm,
                                                  mask=kept_mask,
                                                  cmap='viridis',
                                                  min_value=0,
                                                  max_value=1)

    # Write shape and nir data to results file
    pcv.print_results(filename=args.result)
Exemple #15
0
def main():
    # Create input arguments object
    args = options()

    # Set debug mode
    pcv.params.debug = args.debug

    # Open a single image
    img, imgpath, imgname = pcv.readimage(filename=args.image)

    # Visualize colorspaces
    all_cs = pcv.visualize.colorspaces(rgb_img=img)

    # Extract the Blue-Yellow ("b") channel from the LAB colorspace
    gray_img = pcv.rgb2gray_lab(rgb_img=img, channel="b")

    # Plot a histogram of pixel values for the Blue-Yellow ("b") channel.
    hist_plot = pcv.visualize.histogram(gray_img=gray_img)

    # Apply a binary threshold to the Blue-Yellow ("b") grayscale image.
    thresh_img = pcv.threshold.binary(gray_img=gray_img,
                                      threshold=140,
                                      max_value=255,
                                      object_type="light")

    # Apply a dilation with a 5x5 kernel and 3 iterations
    dil_img = pcv.dilate(gray_img=thresh_img, ksize=5, i=3)

    # Fill in small holes in the leaves
    closed_img = pcv.fill_holes(bin_img=dil_img)

    # Erode the plant pixels using a 5x5 kernel and 3 iterations
    er_img = pcv.erode(gray_img=closed_img, ksize=5, i=3)

    # Apply a Gaussian blur with a 5 x 5 kernel.
    blur_img = pcv.gaussian_blur(img=er_img, ksize=(5, 5))

    # Set pixel values less than 255 to 0
    blur_img[np.where(blur_img < 255)] = 0

    # Fill/remove objects less than 300 pixels in area
    cleaned = pcv.fill(bin_img=blur_img, size=300)

    # Create a circular ROI
    roi, roi_str = pcv.roi.circle(img=img, x=1725, y=1155, r=400)

    # Identify objects in the binary image
    cnts, cnts_str = pcv.find_objects(img=img, mask=cleaned)

    # Filter objects by region of interest
    plant_cnt, plant_str, plant_mask, plant_area = pcv.roi_objects(
        img=img,
        roi_contour=roi,
        roi_hierarchy=roi_str,
        object_contour=cnts,
        obj_hierarchy=cnts_str)

    # Combine objects into one
    plant, mask = pcv.object_composition(img=img,
                                         contours=plant_cnt,
                                         hierarchy=plant_str)

    # Measure size and shape properties
    shape_img = pcv.analyze_object(img=img, obj=plant, mask=mask)
    if args.writeimg:
        pcv.print_image(img=shape_img,
                        filename=os.path.join(args.outdir,
                                              "shapes_" + imgname))

    # Analyze color properties
    color_img = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="hsv")
    if args.writeimg:
        pcv.print_image(img=color_img,
                        filename=os.path.join(args.outdir,
                                              "histogram_" + imgname))

    # Save the measurements to a file
    pcv.print_results(filename=args.result)
        obj_hierarchy=roi_obj_hierarchy)

    # Combine objects together in each plant
    plant_contour, plant_mask = pcv.object_composition(
        img=img_copy, contours=filtered_contours, hierarchy=filtered_hierarchy)

    # Analyze the shape of each plant
    analysis_images = pcv.analyze_object(img=img_copy,
                                         obj=plant_contour,
                                         mask=plant_mask)

    # Save the image with shape characteristics
    img_copy = analysis_images

    # Print out a text file with shape data for each plant in the image
    pcv.print_results(filename='prefix_' + str(i) + '.txt')
    # Clear the measurements stored globally into the Ouptuts class
    pcv.outputs.clear()

# Plot out the image with shape analysis on each plant in the image
pcv.plot_image(img_copy)

# To view and/or download the text file output (saved in JSON format)...
# 1) To see the text file with data that got saved out, click “File” tab in top left corner.
# 2) Click “Open…”
# 3) Open the multi-plant text files
#
# Check out documentation on how to [convert JSON](https://plantcv.readthedocs.io/en/latest/tools/#convert-output-json-data-files-to-csv-tables) format output into table formatted output. Depending on the analysis steps a PlantCV user may have two CSV files (single value traits and multivalue traits).
#
#
#
Exemple #17
0
filled_img = fill_segments(mask=cropped_mask, objects=roi_objects)

# Access data stored out from fill_segments
segments_area = pcv.outputs.observations['segment_area']['value']

# In[116]:

#Length
# Measure path lengths of segments

# Inputs:
#   segmented_img = Segmented image to plot lengths on
#   objects       = List of contours
labeled_img = pcv.morphology.segment_path_length(segmented_img=filled_img,
                                                 objects=roi_objects)

# In[117]:

# Write morphological data to results file

# The print_results function will take the measurements stored when running any (or all) of these functions, format,
# and print an output text file for data analysis. The Outputs class stores data whenever any of the following functions
# are ran: analyze_bound_horizontal, analyze_bound_vertical, analyze_color, analyze_nir_intensity, analyze_object,
# fluor_fvfm, report_size_marker_area, watershed. If no functions have been run, it will print an empty text file
pcv.print_results(filename=args.result)

# In[100]:

#CLEARS OUTPUTS
#pcv.outputs.clear()
    object, mask = pcv.object_composition(img, roi_objects, roi_obj_hierarchy)

    shape_img = pcv.analyze_object(img, object, mask)

    pcv.outputs.add_observation(variable='roi',
                                trait='roi',
                                method='roi',
                                scale='int',
                                datatype=int,
                                value=i,
                                label='#')
    filename = str(i) + "_" + args.result
    with open(filename, "w") as r:
        r.write(metadata)
    pcv.print_results(filename=filename)
    pcv.outputs.clear()

    #Print out a text file with shape data for each plant in the image <-- removed code
    #Old code would create a separate txt file for each plant in the picture
    #i.e. if you had 18 recognized plants you would get 18 text files
    #new code takes opens those 18 text files one by one and re-writes them into a "final file"
    #all the data from each text file gets put into one file and the 18 text files get removed except
    #the last one
#     pcv.print_results(filename = str(i)+ args.result)
#     with open(args.result, "a") as finalfile:
#         with open('prefix_' +str(i)+ '.txt') as tempfile:
#             for x in tempfile.readlines():
#                 finalfile.write(x)
#                 finalfile.write("\n")
#         tempfile.close()