class RatBMI(BMILoop, LogExperiment): status = dict(wait=dict(start_trial='feedback_on', stop=None), feedback_on=dict(baseline_hit='periph_targets', stop=None), periph_targets=dict(target_hit='check_reward', timeout='noise_burst', stop=None), check_reward=dict(rewarded_target='reward', unrewarded_target='feedback_pause'), feedback_pause=dict(end_feedback_pause='wait'), reward=dict(reward_end='wait'), noise_burst=dict(noise_burst_end='noise_burst_timeout'), noise_burst_timeout=dict(noise_burst_timeout_end='wait')) #Flag for feedback on or not feedback = False prev_targ_hit = 't1' timeout_time = traits.Float(30.) noise_burst_time = traits.Float(3.) noise_burst_timeout_time = traits.Float(1.) reward_time = traits.Float(1., desc='reward time') #Frequency range: aud_freq_range = traits.Tuple((1000., 20000.)) plant_type = traits.OptionsList(*plantlist, desc='', bmi3d_input_options=plantlist.keys()) #Time to average over: nsteps = traits.Float(10.) feedback_pause = traits.Float(3.) def __init__(self, *args, **kwargs): super(RatBMI, self).__init__(*args, **kwargs) if hasattr(self, 'decoder'): print self.decoder else: self.decoder = kwargs['decoder'] dec_params = dict(nsteps=self.nsteps, freq_lim=self.aud_freq_range) for k, (key, val) in enumerate(dec_params.items()): print key, val, self.decoder.filt.dec_params[key] assert self.decoder.filt.dec_params[key] == val self.decoder.filt.init_from_task(self.decoder.n_units, **dec_params) self.plant = plantlist[self.plant_type] def init(self, *args, **kwargs): self.add_dtype('cursor', 'f8', (2, )) self.add_dtype('freq', 'f8', (2, )) super(RatBMI, self).init() self.decoder.count_max = self.feature_accumulator.count_max def _cycle(self): self.rat_cursor = self.decoder.filt.get_mean() self.task_data['cursor'] = self.rat_cursor self.task_data['freq'] = self.decoder.filt.F self.decoder.cnt = self.feature_accumulator.count self.decoder.feedback = self.feedback super(RatBMI, self)._cycle() # def move_plant(self): # if self.feature_accumulator.count == self.feature_accumulator.count_max: # print 'self.plant.drive from task.py' # self.plant.drive(self.decoder) def _start_wait(self): return True def _test_start_trial(self, ts): return True def _test_rewarded_target(self, ts): if self.prev_targ_hit == 't1': return False elif self.prev_targ_hit == 't2': return True def _test_unrewarded_target(self, ts): if self.prev_targ_hit == 't1': return True elif self.prev_targ_hit == 't2': return False def _start_feedback_pause(self): self.feedback = False def _test_end_feedback_pause(self, ts): return ts > self.feedback_pause def _start_reward(self): print 'reward!' def _start_feedback_on(self): self.feedback = True def _test_baseline_hit(self, ts): if self.prev_targ_hit == 't1': #Must go below baseline: return self.rat_cursor <= self.decoder.filt.mid elif self.prev_targ_hit == 't2': #Must rise above baseline: return self.rat_cursor >= self.decoder.filt.mid else: return False def _test_target_hit(self, ts): if self.rat_cursor >= self.decoder.filt.t1: self.prev_targ_hit = 't1' self.feedback = False return True elif self.rat_cursor <= self.decoder.filt.t2: self.prev_targ_hit = 't2' self.feedback = False return True else: return False def _test_timeout(self, ts): return ts > self.timeout_time def _test_noise_burst_end(self, ts): return ts > self.noise_burst_time def _test_noise_burst_timeout_end(self, ts): return ts > self.noise_burst_timeout_time def _start_noise_burst(self): self.feedback = False self.plant.play_white_noise() def move_plant(self): super(RatBMI, self).move_plant() def get_current_assist_level(self): return 0.
class ArmPlant(Window): ''' This task creates a RobotArm object and allows it to move around the screen based on either joint or endpoint positions. There is a spherical cursor at the end of the arm. The links of the arm can be visible or hidden. ''' background = (0, 0, 0, 1) arm_visible = traits.Bool( True, desc='Specifies whether entire arm is displayed or just endpoint') cursor_radius = traits.Float(.5, desc="Radius of cursor") cursor_color = (.5, 0, .5, 1) arm_class = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) starting_pos = (5, 0, 5) def __init__(self, *args, **kwargs): super(ArmPlant, self).__init__(*args, **kwargs) self.cursor_visible = True # Initialize the arm self.arm = ik.test_3d self.arm_vis_prev = True if self.arm_class == 'CursorPlant': pass else: self.dtype.append(('joint_angles', 'f8', (self.arm.num_joints, ))) self.dtype.append(('arm_visible', 'f8', (1, ))) self.add_model(self.arm) ## Declare cursor self.dtype.append(('cursor', 'f8', (3, ))) self.cursor = Sphere(radius=self.cursor_radius, color=self.cursor_color) self.add_model(self.cursor) self.cursor.translate(*self.arm.get_endpoint_pos(), reset=True) def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second by default. ''' ## Run graphics commands to show/hide the arm if the visibility has changed if self.arm_class != 'CursorPlant': if self.arm_visible != self.arm_vis_prev: self.arm_vis_prev = self.arm_visible self.show_object(self.arm, show=self.arm_visible) self.move_arm() self.update_cursor() if self.cursor_visible: self.task_data['cursor'] = self.cursor.xfm.move.copy() else: #if the cursor is not visible, write NaNs into cursor location saved in file self.task_data['cursor'] = np.array([np.nan, np.nan, np.nan]) if self.arm_class != 'CursorPlant': if self.arm_visible: self.task_data['arm_visible'] = 1 else: self.task_data['arm_visible'] = 0 super(ArmPlant, self)._cycle() ## Functions to move the cursor using keyboard/mouse input def get_mouse_events(self): import pygame events = [] for btn in pygame.event.get( (pygame.MOUSEBUTTONDOWN, pygame.MOUSEBUTTONUP)): events = events + [btn.button] return events def get_key_events(self): import pygame return pygame.key.get_pressed() def move_arm(self): ''' allows use of keyboard keys to test movement of arm. Use QW/OP for joint movements, arrow keys for endpoint movements ''' import pygame keys = self.get_key_events() joint_speed = (np.pi / 6) / 60 hand_speed = .2 x, y, z = self.arm.get_endpoint_pos() if keys[pygame.K_RIGHT]: x = x - hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if keys[pygame.K_LEFT]: x = x + hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if keys[pygame.K_DOWN]: z = z - hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if keys[pygame.K_UP]: z = z + hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if self.arm.num_joints == 2: xz, xy = self.get_arm_joints() e = np.array([xz[0], xy[0]]) s = np.array([xz[1], xy[1]]) if keys[pygame.K_q]: s = s - joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if keys[pygame.K_w]: s = s + joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if keys[pygame.K_o]: e = e - joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if keys[pygame.K_p]: e = e + joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if self.arm.num_joints == 4: jts = self.get_arm_joints() keyspressed = [ keys[pygame.K_q], keys[pygame.K_w], keys[pygame.K_e], keys[pygame.K_r] ] for i in range(self.arm.num_joints): if keyspressed[i]: jts[i] = jts[i] + joint_speed self.set_arm_joints(jts) def get_cursor_location(self): return self.arm.get_endpoint_pos() def set_arm_endpoint(self, pt, **kwargs): self.arm.set_endpoint_pos(pt, **kwargs) def set_arm_joints(self, angle_xz, angle_xy): self.arm.set_intrinsic_coordinates(angle_xz, angle_xy) def get_arm_joints(self): return self.arm.get_intrinsic_coordinates() def update_cursor(self): ''' Update the cursor's location and visibility status. ''' pt = self.get_cursor_location() if pt is not None: self.move_cursor(pt) def move_cursor(self, pt): ''' Move the cursor object to the specified 3D location. ''' if not hasattr(self.arm, 'endpt_cursor'): self.cursor.translate(*pt[:3], reset=True)
class LFP_Mod(BMILoop, Sequence, Window): background = (0,0,0,1) plant_visible = traits.Bool(True, desc='Specifies whether entire plant is displayed or just endpoint') lfp_cursor_rad = traits.Float(.5, desc="length of LFP cursor") lfp_cursor_color = (.5,0,.5,.75) lfp_plant_type_options = plantlist.keys() lfp_plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) window_size = traits.Tuple((1920*2, 1080), desc='window size') lfp_frac_lims = traits.Tuple((0., 0.35), desc='fraction limits') xlfp_frac_lims = traits.Tuple((-.7, 1.7), desc = 'x dir fraction limits') lfp_control_band = traits.Tuple((25, 40), desc='beta power band limits') lfp_totalpw_band = traits.Tuple((1, 100), desc='total power band limits') xlfp_control_band = traits.Tuple((0, 5), desc = 'x direction band limits') n_steps = traits.Int(2, desc='moving average for decoder') powercap = traits.Float(1, desc="Timeout for total power above this") zboundaries=(-12,12) status = dict( wait = dict(start_trial="lfp_target", stop=None), lfp_target = dict(enter_lfp_target="lfp_hold", powercap_penalty="powercap_penalty", stop=None), lfp_hold = dict(leave_early="lfp_target", lfp_hold_complete="reward", powercap_penalty="powercap_penalty"), powercap_penalty = dict(powercap_penalty_end="lfp_target"), reward = dict(reward_end="wait") ) static_states = [] # states in which the decoder is not run trial_end_states = ['reward'] lfp_cursor_on = ['lfp_target', 'lfp_hold'] #initial state state = "wait" #create settable traits reward_time = traits.Float(.5, desc="Length of juice reward") lfp_target_rad = traits.Float(3.6, desc="Length of targets in cm") lfp_hold_time = traits.Float(.2, desc="Length of hold required at lfp targets") lfp_hold_var = traits.Float(.05, desc="Length of hold variance required at lfp targets") hold_penalty_time = traits.Float(1, desc="Length of penalty time for target hold error") powercap_penalty_time = traits.Float(1, desc="Length of penalty time for timeout error") # max_attempts = traits.Int(10, desc='The number of attempts at a target before\ # skipping to the next one') session_length = traits.Float(0, desc="Time until task automatically stops. Length of 0 means no auto stop.") #plant_hide_rate = traits.Float(0.0, desc='If the plant is visible, specifies a percentage of trials where it will be hidden') lfp_target_color = (123/256.,22/256.,201/256.,.5) mc_target_color = (1,0,0,.5) target_index = -1 # Helper variable to keep track of which target to display within a trial #tries = 0 # Helper variable to keep track of the number of failed attempts at a given trial. cursor_visible = False # Determines when to hide the cursor. no_data_count = 0 # Counter for number of missing data frames in a row sequence_generators = ['lfp_mod_4targ'] def __init__(self, *args, **kwargs): super(LFP_Mod, self).__init__(*args, **kwargs) self.cursor_visible = True print 'INIT FRAC LIMS: ', self.lfp_frac_lims dec_params = dict(lfp_frac_lims = self.lfp_frac_lims, xlfp_frac_lims = self.xlfp_frac_lims, powercap = self.powercap, zboundaries = self.zboundaries, lfp_control_band = self.lfp_control_band, lfp_totalpw_band = self.lfp_totalpw_band, xlfp_control_band = self.xlfp_control_band, n_steps = self.n_steps) self.decoder.filt.init_from_task(**dec_params) self.decoder.init_from_task(**dec_params) self.lfp_plant = plantlist[self.lfp_plant_type] if self.lfp_plant_type == 'inv_cursor_onedimLFP': print 'MAKE SURE INVERSE GENERATOR IS ON' self.plant_vis_prev = True self.current_assist_level = 0 self.learn_flag = False if hasattr(self.lfp_plant, 'graphics_models'): for model in self.lfp_plant.graphics_models: self.add_model(model) # Instantiate the targets ''' height and width on kinarm machine are 2.4. Here we make it 2.4/8*12 = 3.6 ''' lfp_target = VirtualSquareTarget(target_radius=self.lfp_target_rad, target_color=self.lfp_target_color) self.targets = [lfp_target] # Initialize target location variable self.target_location_lfp = np.array([-100, -100, -100]) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.lfp_plant.hdf_attrs: self.add_dtype(*attr) def init(self): self.plant = DummyPlant() self.add_dtype('lfp_target', 'f8', (3,)) self.add_dtype('target_index', 'i', (1,)) self.add_dtype('powercap_flag', 'i',(1,)) for target in self.targets: for model in target.graphics_models: self.add_model(model) super(LFP_Mod, self).init() def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second. ''' self.task_data['loop_time'] = self.iter_time() self.task_data['lfp_target'] = self.target_location_lfp.copy() self.task_data['target_index'] = self.target_index #self.task_data['internal_decoder_state'] = self.decoder.filt.current_lfp_pos self.task_data['powercap_flag'] = self.decoder.filt.current_powercap_flag self.move_plant() ## Save plant status to HDF file, ###ADD BACK lfp_plant_data = self.lfp_plant.get_data_to_save() for key in lfp_plant_data: self.task_data[key] = lfp_plant_data[key] super(LFP_Mod, self)._cycle() def move_plant(self): feature_data = self.get_features() # Save the "neural features" (e.g. spike counts vector) to HDF file for key, val in feature_data.items(): self.task_data[key] = val Bu = None assist_weight = 0 target_state = np.zeros([self.decoder.n_states, self.decoder.n_subbins]) ## Run the decoder if self.state not in self.static_states: neural_features = feature_data[self.extractor.feature_type] self.call_decoder(neural_features, target_state, Bu=Bu, assist_level=assist_weight, feature_type=self.extractor.feature_type) ## Drive the plant to the decoded state, if permitted by the constraints of the plant self.lfp_plant.drive(self.decoder) self.task_data['decoder_state'] = decoder_state = self.decoder.get_state(shape=(-1,1)) return decoder_state def run(self): ''' See experiment.Experiment.run for documentation. ''' # Fire up the plant. For virtual/simulation plants, this does little/nothing. self.lfp_plant.start() try: super(LFP_Mod, self).run() finally: self.lfp_plant.stop() ##### HELPER AND UPDATE FUNCTIONS #### def update_cursor_visibility(self): ''' Update cursor visible flag to hide cursor if there has been no good data for more than 3 frames in a row''' prev = self.cursor_visible if self.no_data_count < 3: self.cursor_visible = True if prev != self.cursor_visible: self.show_object(self.cursor, show=True) else: self.cursor_visible = False if prev != self.cursor_visible: self.show_object(self.cursor, show=False) def update_report_stats(self): ''' see experiment.Experiment.update_report_stats for docs ''' super(LFP_Mod, self).update_report_stats() self.reportstats['Trial #'] = self.calc_trial_num() self.reportstats['Reward/min'] = np.round(self.calc_events_per_min('reward', 120), decimals=2) #### TEST FUNCTIONS #### def _test_powercap_penalty(self, ts): if self.decoder.filt.current_powercap_flag: #Turn off power cap flag: self.decoder.filt.current_powercap_flag = 0 return True else: return False def _test_enter_lfp_target(self, ts): ''' return true if the distance between center of cursor and target is smaller than the cursor radius in the x and z axis only ''' cursor_pos = self.lfp_plant.get_endpoint_pos() dx = np.linalg.norm(cursor_pos[0] - self.target_location_lfp[0]) dz = np.linalg.norm(cursor_pos[2] - self.target_location_lfp[2]) in_targ = False if dx<= (self.lfp_target_rad/2.) and dz<= (self.lfp_target_rad/2.): in_targ = True return in_targ # #return d <= (self.lfp_target_rad - self.lfp_cursor_rad) # #If center of cursor enters target at all: # return d <= (self.lfp_target_rad/2.) # #New version: # cursor_pos = self.lfp_plant.get_endpoint_pos() # d = np.linalg.norm(cursor_pos[2] - self.target_location_lfp[2]) # d <= (self.lfp_target_rad - self.lfp_cursor_rad) def _test_leave_early(self, ts): ''' return true if cursor moves outside the exit radius ''' cursor_pos = self.lfp_plant.get_endpoint_pos() dx = np.linalg.norm(cursor_pos[0] - self.target_location_lfp[0]) dz = np.linalg.norm(cursor_pos[2] - self.target_location_lfp[2]) out_of_targ = False if dx > (self.lfp_target_rad/2.) or dz > (self.lfp_target_rad/2.): out_of_targ = True #rad = self.lfp_target_rad - self.lfp_cursor_rad #return d > rad return out_of_targ def _test_lfp_hold_complete(self, ts): return ts>=self.lfp_hold_time_plus_var # def _test_lfp_timeout(self, ts): # return ts>self.timeout_time def _test_powercap_penalty_end(self, ts): if ts>self.powercap_penalty_time: self.lfp_plant.turn_on() return ts>self.powercap_penalty_time def _test_reward_end(self, ts): return ts>self.reward_time def _test_stop(self, ts): if self.session_length > 0 and (self.get_time() - self.task_start_time) > self.session_length: self.end_task() return self.stop #### STATE FUNCTIONS #### def _parse_next_trial(self): self.targs = self.next_trial def _start_wait(self): super(LFP_Mod, self)._start_wait() self.tries = 0 self.target_index = -1 #hide targets for target in self.targets: target.hide() #get target locations for this trial self._parse_next_trial() self.chain_length = 1 self.lfp_hold_time_plus_var = self.lfp_hold_time + np.random.uniform(low=-1,high=1)*self.lfp_hold_var def _start_lfp_target(self): self.target_index += 1 self.target_index = 0 #only 1 target: target = self.targets[0] self.target_location_lfp = self.targs #Just one target. target.move_to_position(self.target_location_lfp) target.cue_trial_start() def _start_lfp_hold(self): #make next target visible unless this is the final target in the trial idx = (self.target_index + 1) if idx < self.chain_length: target = self.targets[idx % 2] target.move_to_position(self.targs[idx]) def _end_lfp_hold(self): # change current target color to green self.targets[self.target_index % 2].cue_trial_end_success() def _start_timeout_penalty(self): #hide targets for target in self.targets: target.hide() self.tries += 1 self.target_index = -1 def _start_reward(self): super(LFP_Mod, self)._start_reward() #self.targets[self.target_index % 2].show() def _start_powercap_penalty(self): for target in self.targets: target.hide() self.lfp_plant.turn_off() @staticmethod def lfp_mod_4targ(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8): '''Mimics beta modulation task from Kinarm Rig: In Kinarm rig, the following linear transformations happen: 1. LFP cursor is calculated 2. mapped from fraction limits [0, .35] to [-1, 1] (unit_coordinates) 3. udp sent to kinarm machine and multiplied by 8 4. translated upward in the Y direction by + 2.5 This means, our targets which are at -8, [-0.75, 2.5, 5.75, 9.0] must be translated down by 2.5 to: -8, [-3.25, 0. , 3.25, 6.5] then divided by 8: -1, [-0.40625, 0. , 0.40625, 0.8125 ] in unit_coordinates The radius is 1.2, which is 0.15 in unit_coordinates Now, we map this to a new system: - new_zero: (y1+y2) / 2 - new_scale: (y2 - y1) / 2 (([-0.40625, 0. , 0.40625, 0.8125 ]) * new_scale ) + new_zero new_zero = 0 new_scale = 12 12 * [-0.40625, 0. , 0.40625, 0.8125 ] = array([-4.875, 0. , 4.875, 9.75 ]) ''' new_zero = (boundaries[3]+boundaries[2]) / 2. new_scale = (boundaries[3] - boundaries[2]) / 2. kin_targs = np.array([-0.40625, 0. , 0.40625, 0.8125 ]) lfp_targ_y = (new_scale*kin_targs) + new_zero for i in range(nblocks): temp = lfp_targ_y.copy() np.random.shuffle(temp) if i==0: z = temp.copy() else: z = np.hstack((z, temp)) #Fixed X axis: x = np.tile(xaxis,(nblocks*4)) y = np.zeros(nblocks*4) pairs = np.vstack([x, y, z]).T return pairs
class LFP_Mod_plus_MC_reach(LFP_Mod_plus_MC_hold): mc_cursor_radius = traits.Float(.5, desc="Radius of cursor") mc_target_radius = traits.Float(3, desc="Radius of MC target") mc_cursor_color = (.5,0,.5,1) mc_plant_type_options = plantlist.keys() mc_plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) origin_hold_time = traits.Float(.2, desc="Hold time in center") mc_periph_holdtime = traits.Float(.2, desc="Hold time in center") mc_timeout_time = traits.Float(10, desc="Time allowed to go between targets") exclude_parent_traits = ['goal_cache_block'] #redefine this to NOT include marker_num, marker_count marker_num = traits.Int(14,desc='Index') marker_count = traits.Int(16,desc='Num of markers') scale_factor = 3.0 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) wait_flag = 1 # NOTE!!! The marker on the hand was changed from #0 to #14 on # 5/19/13 after LED #0 broke. All data files saved before this date # have LED #0 controlling the cursor. limit2d = 1 # state_file = open("/home/helene/preeya/tot_pw.txt","w") state_cnt = 0 status = dict( wait = dict(start_trial="origin", stop=None), origin = dict(enter_origin="origin_hold", stop=None), origin_hold = dict(origin_hold_complete="lfp_target",leave_origin="hold_penalty", stop=None), lfp_target = dict(enter_lfp_target="lfp_hold", leave_origin="hold_penalty", powercap_penalty="powercap_penalty", stop=None), lfp_hold = dict(leave_early="lfp_target", lfp_hold_complete="mc_target", leave_origin="hold_penalty",powercap_penalty="powercap_penalty"), mc_target = dict(enter_mc_target='mc_hold',mc_timeout="timeout_penalty", stop=None), mc_hold = dict(leave_periph_early='hold_penalty',mc_hold_complete="reward"), powercap_penalty = dict(powercap_penalty_end="origin"), timeout_penalty = dict(timeout_penalty_end="wait"), hold_penalty = dict(hold_penalty_end="origin"), reward = dict(reward_end="wait"), ) static_states = ['origin'] # states in which the decoder is not run trial_end_states = ['reward', 'timeout_penalty'] lfp_cursor_on = ['lfp_target', 'lfp_hold', 'reward'] sequence_generators = ['lfp_mod_plus_MC_reach', 'lfp_mod_plus_MC_reach_INV'] def __init__(self, *args, **kwargs): # import pickle # decoder = pickle.load(open('/storage/decoders/cart20141216_03_cart_new2015_2.pkl')) # self.decoder = decoder super(LFP_Mod_plus_MC_reach, self).__init__(*args, **kwargs) mc_origin = VirtualCircularTarget(target_radius=self.mc_target_radius, target_color=RED) mc_periph = VirtualCircularTarget(target_radius=self.mc_target_radius, target_color=RED) lfp_target = VirtualSquareTarget(target_radius=self.lfp_target_rad, target_color=self.lfp_target_color) self.targets = [lfp_target, mc_origin, mc_periph] # #Should be unnecessary: # for target in self.targets: # for model in target.graphics_models: # self.add_model(model) # self.lfp_plant = plantlist[self.lfp_plant_type] # if hasattr(self.lfp_plant, 'graphics_models'): # for model in self.lfp_plant.graphics_models: # self.add_model(model) # self.mc_plant = plantlist[self.mc_plant_type] # if hasattr(self.mc_plant, 'graphics_models'): # for model in self.mc_plant.graphics_models: # self.add_model(model) def _parse_next_trial(self): t = self.next_trial self.lfp_targ = t['lfp'] self.mc_targ_orig = t['origin'] self.mc_targ_periph = t['periph'] def _start_mc_target(self): #Turn off LFP things self.lfp_plant.turn_off() self.targets[0].hide() self.targets[1].hide() target = self.targets[2] #MC target self.target_location_mc = self.mc_targ_periph target.move_to_position(self.target_location_mc) target.cue_trial_start() def _test_enter_mc_target(self,ts): cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) return d <= (self.mc_target_radius - self.mc_cursor_radius) def _test_mc_timeout(self, ts): return ts>self.mc_timeout_time def _test_leave_periph_early(self, ts): cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) rad = self.mc_target_radius - self.mc_cursor_radius return d > rad def _test_mc_hold_complete(self, ts): return ts>self.mc_periph_holdtime def _timeout_penalty_end(self, ts): print 'timeout', ts #return ts > 1. return True def _end_mc_hold(self): self.targets[2].cue_trial_end_success() # def _cycle(self): # if self.state_cnt < 3600*3: # self.state_cnt +=1 # s = "%s\n" % self.state # self.state_file.write(str(s)) # if self.state_cnt == 3600*3: # self.state_file.close() # super(LFP_Mod_plus_MC_reach, self)._cycle() def _start_reward(self): super(LFP_Mod_plus_MC_reach, self)._start_reward() lfp_targ = self.targets[0] mc_orig = self.targets[1] lfp_targ.hide() mc_orig.hide() @staticmethod def lfp_mod_plus_MC_reach(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8, target_distance=6, n_mc_targets=4, mc_target_angle_offset=0,**kwargs): new_zero = (boundaries[3]+boundaries[2]) / 2. new_scale = (boundaries[3] - boundaries[2]) / 2. kin_targs = np.array([-0.40625, 0. , 0.40625, 0.8125 ]) lfp_targ_y = (new_scale*kin_targs) + new_zero for i in range(nblocks): temp = lfp_targ_y.copy() np.random.shuffle(temp) if i==0: z = temp.copy() else: z = np.hstack((z, temp)) #Fixed X axis: x = np.tile(xaxis,(nblocks*4)) y = np.zeros(nblocks*4) lfp = np.vstack([x, y, z]).T origin = np.zeros(( lfp.shape )) theta = [] for i in range(nblocks*4): temp = np.arange(0, 2*np.pi, 2*np.pi/float(n_mc_targets)) np.random.shuffle(temp) theta = theta + [temp] theta = np.hstack(theta) theta = theta + (mc_target_angle_offset*(np.pi/180.)) x = target_distance*np.cos(theta) y = np.zeros(len(theta)) z = target_distance*np.sin(theta) periph = np.vstack([x, y, z]).T it = iter([dict(lfp=lfp[i,:], origin=origin[i,:], periph=periph[i,:]) for i in range(lfp.shape[0])]) if ('return_arrays' in kwargs.keys()) and kwargs['return_arrays']==True: return lfp, origin, periph else: return it @staticmethod def lfp_mod_plus_MC_reach_INV(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8, target_distance=6, n_mc_targets=4, mc_target_angle_offset=0): kw = dict(return_arrays=True) lfp, origin, periph = LFP_Mod_plus_MC_reach.lfp_mod_plus_MC_reach(nblocks=nblocks, boundaries=boundaries, xaxis=xaxis, target_distance=target_distance, n_mc_targets=n_mc_targets, mc_target_angle_offset=mc_target_angle_offset,**kw) #Invert LFP: lfp[:,2] = -1.0*lfp[:,2] it = iter([dict(lfp=lfp[i,:], origin=origin[i,:], periph=periph[i,:]) for i in range(lfp.shape[0])]) return it
class LFP_Mod_plus_MC_hold(LFP_Mod): mc_cursor_radius = traits.Float(.5, desc="Radius of cursor") mc_target_radius = traits.Float(3, desc="Radius of MC target") mc_cursor_color = (.5,0,.5,1) mc_plant_type_options = plantlist.keys() mc_plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) origin_hold_time = traits.Float(.2, desc="Hold time in center") exclude_parent_traits = ['goal_cache_block'] #redefine this to NOT include marker_num, marker_count marker_num = traits.Int(14,desc='Index') marker_count = traits.Int(16,desc='Num of markers') joystick_method = traits.Float(1,desc="1: Normal velocity, 0: Position control") joystick_speed = traits.Float(20, desc="Radius of cursor") move_while_in_center = traits.Float(1, desc="1 = update plant while in lfp_target, lfp_hold, 0 = don't update in these states") scale_factor = 3.0 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) wait_flag = 1 # NOTE!!! The marker on the hand was changed from #0 to #14 on # 5/19/13 after LED #0 broke. All data files saved before this date # have LED #0 controlling the cursor. limit2d = 1 status = dict( wait = dict(start_trial="origin", stop=None), origin = dict(enter_origin="origin_hold", stop=None), origin_hold = dict(origin_hold_complete="lfp_target",leave_origin="hold_penalty", stop=None), lfp_target = dict(enter_lfp_target="lfp_hold", leave_origin="hold_penalty", powercap_penalty="powercap_penalty", stop=None), lfp_hold = dict(leave_early="lfp_target", lfp_hold_complete="reward", leave_origin="hold_penalty", powercap_penalty="powercap_penalty",stop=None), powercap_penalty = dict(powercap_penalty_end="origin"), hold_penalty = dict(hold_penalty_end="origin",stop=None), reward = dict(reward_end="wait") ) static_states = ['origin'] # states in which the decoder is not run trial_end_states = ['reward'] lfp_cursor_on = ['lfp_target', 'lfp_hold', 'reward'] sequence_generators = ['lfp_mod_4targ_plus_mc_orig'] def __init__(self, *args, **kwargs): super(LFP_Mod_plus_MC_hold, self).__init__(*args, **kwargs) if self.move_while_in_center>0: self.no_plant_update_states = [] else: self.no_plant_update_states = ['lfp_target', 'lfp_hold'] mc_origin = VirtualCircularTarget(target_radius=self.mc_target_radius, target_color=RED) lfp_target = VirtualSquareTarget(target_radius=self.lfp_target_rad, target_color=self.lfp_target_color) self.targets = [lfp_target, mc_origin] self.mc_plant = plantlist[self.mc_plant_type] if hasattr(self.mc_plant, 'graphics_models'): for model in self.mc_plant.graphics_models: self.add_model(model) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.mc_plant.hdf_attrs: self.add_dtype(*attr) self.target_location_mc = np.array([-100, -100, -100]) self.manual_control_type = None self.current_pt=np.zeros([3]) #keep track of current pt self.last_pt=np.zeros([3]) def init(self): self.add_dtype('mc_targ', 'f8', (3,)) ###ADD BACK super(LFP_Mod_plus_MC_hold, self).init() def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second. ''' self.task_data['mc_targ'] = self.target_location_mc.copy() mc_plant_data = self.mc_plant.get_data_to_save() for key in mc_plant_data: self.task_data[key] = mc_plant_data[key] super(LFP_Mod_plus_MC_hold, self)._cycle() def _parse_next_trial(self): t = self.next_trial self.lfp_targ = t['lfp'] self.mc_targ_orig = t['origin'] def _start_origin(self): if self.wait_flag: self.origin_hold_time_store = self.origin_hold_time self.origin_hold_time = 3 self.wait_flag = 0 else: self.origin_hold_time = self.origin_hold_time_store #only 1 target: target = self.targets[1] #Origin self.target_location_mc = self.mc_targ_orig #Origin target.move_to_position(self.target_location_mc) target.cue_trial_start() #Turn off lfp things self.lfp_plant.turn_off() self.targets[0].hide() def _start_lfp_target(self): #only 1 target: target = self.targets[0] #LFP target self.target_location_lfp = self.lfp_targ #LFP target target.move_to_position(self.target_location_lfp) target.cue_trial_start() self.lfp_plant.turn_on() def _start_lfp_hold(self): #make next target visible unless this is the final target in the trial pass def _start_hold_penalty(self): #hide targets for target in self.targets: target.hide() self.tries += 1 self.target_index = -1 #Turn off lfp things self.lfp_plant.turn_off() self.targets[0].hide() def _end_origin(self): self.targets[1].cue_trial_end_success() def _test_enter_origin(self, ts): cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) return d <= (self.mc_target_radius - self.mc_cursor_radius) # def _test_origin_timeout(self, ts): # return ts>self.timeout_time def _test_leave_origin(self, ts): if self.manual_control_type == 'joystick': if hasattr(self,'touch'): if self.touch <0.5: self.last_touch_zero_event = time.time() return True cursor_pos = self.mc_plant.get_endpoint_pos() d = np.linalg.norm(cursor_pos - self.target_location_mc) return d > (self.mc_target_radius - self.mc_cursor_radius) def _test_origin_hold_complete(self,ts): return ts>=self.origin_hold_time # def _test_enter_lfp_target(self, ts): # ''' # return true if the distance between center of cursor and target is smaller than the cursor radius # ''' # cursor_pos = self.lfp_plant.get_endpoint_pos() # cursor_pos = [cursor_pos[0], cursor_pos[2]] # targ_loc = np.array([self.target_location_lfp[0], self.target_location_lfp[2]]) # d = np.linalg.norm(cursor_pos - targ_loc) # return d <= (self.lfp_target_rad - self.lfp_cursor_rad) # def _test_leave_early(self, ts): # ''' # return true if cursor moves outside the exit radius # ''' # cursor_pos = self.lfp_plant.get_endpoint_pos() # d = np.linalg.norm(cursor_pos - self.target_location_lfp) # rad = self.lfp_target_rad - self.lfp_cursor_rad # return d > rad def _test_hold_penalty_end(self, ts): return ts>self.hold_penalty_time def _end_lfp_hold(self): # change current target color to green self.targets[0].cue_trial_end_success() def move_plant(self): if self.state in self.lfp_cursor_on: feature_data = self.get_features() # Save the "neural features" (e.g. spike counts vector) to HDF file for key, val in feature_data.items(): self.task_data[key] = val Bu = None assist_weight = 0 target_state = np.zeros([self.decoder.n_states, self.decoder.n_subbins]) ## Run the decoder neural_features = feature_data[self.extractor.feature_type] self.call_decoder(neural_features, target_state, Bu=Bu, assist_level=assist_weight, feature_type=self.extractor.feature_type) ## Drive the plant to the decoded state, if permitted by the constraints of the plant self.lfp_plant.drive(self.decoder) self.task_data['decoder_state'] = decoder_state = self.decoder.get_state(shape=(-1,1)) #return decoder_state #Sets the plant configuration based on motiontracker data. For manual control, uses #motiontracker data. If no motiontracker data available, returns None''' #get data from motion tracker- take average of all data points since last poll if self.state in self.no_plant_update_states: pt = np.array([0, 0, 0]) print 'no update' else: if self.manual_control_type == 'motiondata': pt = self.motiondata.get() if len(pt) > 0: pt = pt[:, self.marker_num, :] conds = pt[:, 3] inds = np.nonzero((conds>=0) & (conds!=4))[0] if len(inds) > 0: pt = pt[inds,:3] #scale actual movement to desired amount of screen movement pt = pt.mean(0) * self.scale_factor #Set y coordinate to 0 for 2D tasks if self.limit2d: #pt[1] = 0 pt[2] = pt[1].copy() pt[1] = 0 pt[1] = pt[1]*2 # Return cursor location self.no_data_count = 0 pt = pt * mm_per_cm #self.convert_to_cm(pt) else: #if no usable data self.no_data_count += 1 pt = None else: #if no new data self.no_data_count +=1 pt = None elif self.manual_control_type == 'joystick': pt = self.joystick.get() #if touch sensor on: try: self.touch = pt[-1][0][2] except: pass if len(pt) > 0: pt = pt[-1][0] pt[0]=1-pt[0]; #Switch L / R axes calib = [0.497,0.517] #Sometimes zero point is subject to drift this is the value of the incoming joystick when at 'rest' if self.joystick_method==0: #pt = pt[-1][0] #pt[0]=1-pt[0]; #Switch L / R axes #calib = [0.497,0.517] #Sometimes zero point is subject to drift this is the value of the incoming joystick when at 'rest' # calib = [ 0.487, 0. ] pos = np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) pos[0] = pos[0]*36 pos[2] = pos[2]*24 self.current_pt = pos elif self.joystick_method==1: vel=np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) epsilon = 2*(10**-2) #Define epsilon to stabilize cursor movement if sum((vel)**2) > epsilon: self.current_pt=self.last_pt+self.joystick_speed*vel*(1/60) #60 Hz update rate, dt = 1/60 else: self.current_pt = self.last_pt if self.current_pt[0] < -25: self.current_pt[0] = -25 if self.current_pt[0] > 25: self.current_pt[0] = 25 if self.current_pt[-1] < -14: self.current_pt[-1] = -14 if self.current_pt[-1] > 14: self.current_pt[-1] = 14 pt = self.current_pt #self.plant.set_endpoint_pos(self.current_pt) self.last_pt = self.current_pt.copy() elif self.manual_control_type == None: pt = None try: pt0 = self.motiondata.get() self.manual_control_type='motiondata' except: print 'not motiondata' try: pt0 = self.joystick.get() self.manual_control_type = 'joystick' except: print 'not joystick data' # Set the plant's endpoint to the position determined by the motiontracker, unless there is no data available if self.manual_control_type is not None: if pt is not None and len(pt)>0: self.mc_plant.set_endpoint_pos(pt) @staticmethod def lfp_mod_4targ_plus_mc_orig(nblocks=100, boundaries=(-18,18,-12,12), xaxis=-8): ''' See lfp_mod_4targ for lfp target explanation ''' new_zero = (boundaries[3]+boundaries[2]) / 2. new_scale = (boundaries[3] - boundaries[2]) / 2. kin_targs = np.array([-0.40625, 0. , 0.40625, 0.8125 ]) lfp_targ_y = (new_scale*kin_targs) + new_zero for i in range(nblocks): temp = lfp_targ_y.copy() np.random.shuffle(temp) if i==0: z = temp.copy() else: z = np.hstack((z, temp)) #Fixed X axis: x = np.tile(xaxis,(nblocks*4)) y = np.zeros(nblocks*4) lfp = np.vstack([x, y, z]).T origin = np.zeros(( lfp.shape )) it = iter([dict(lfp=lfp[i,:], origin=origin[i,:]) for i in range(lfp.shape[0])]) return it
class ApproachAvoidanceTask(Sequence, Window): ''' This is for a free-choice task with two targets (left and right) presented to choose from. The position of the targets may change along the x-axis, according to the target generator, and each target has a varying probability of reward, also according to the target generator. The code as it is written is for a joystick. Notes: want target_index to only write once per trial. if so, can make instructed trials random. else, make new state for instructed trial. ''' background = (0,0,0,1) shoulder_anchor = np.array([2., 0., -15.]) # Coordinates of shoulder anchor point on screen arm_visible = traits.Bool(True, desc='Specifies whether entire arm is displayed or just endpoint') cursor_radius = traits.Float(.5, desc="Radius of cursor") cursor_color = (.5,0,.5,1) joystick_method = traits.Float(1,desc="1: Normal velocity, 0: Position control") joystick_speed = traits.Float(20, desc="Speed of cursor") plant_type_options = plantlist.keys() plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) starting_pos = (5, 0, 5) # window_size = (1280*2, 1024) window_size = traits.Tuple((1366*2, 768), desc='window size') status = dict( #wait = dict(start_trial="target", stop=None), wait = dict(start_trial="center", stop=None), center = dict(enter_center="hold_center", timeout="timeout_penalty", stop=None), hold_center = dict(leave_early_center = "hold_penalty",hold_center_complete="target", timeout="timeout_penalty", stop=None), target = dict(enter_targetL="hold_targetL", enter_targetH = "hold_targetH", timeout="timeout_penalty", stop=None), hold_targetR = dict(leave_early_R="hold_penalty", hold_complete="targ_transition"), hold_targetL = dict(leave_early_L="hold_penalty", hold_complete="targ_transition"), targ_transition = dict(trial_complete="check_reward",trial_abort="wait", trial_incomplete="center"), check_reward = dict(avoid="reward",approach="reward_and_airpuff"), timeout_penalty = dict(timeout_penalty_end="targ_transition"), hold_penalty = dict(hold_penalty_end="targ_transition"), reward = dict(reward_end="wait"), reward_and_airpuff = dict(reward_and_airpuff_end="wait"), ) # target_color = (.5,1,.5,0) #initial state state = "wait" #create settable traits reward_time_avoid = traits.Float(.2, desc="Length of juice reward for avoid decision") reward_time_approach_min = traits.Float(.2, desc="Min length of juice for approach decision") reward_time_approach_max = traits.Float(.8, desc="Max length of juice for approach decision") target_radius = traits.Float(1.5, desc="Radius of targets in cm") block_length = traits.Float(100, desc="Number of trials per block") hold_time = traits.Float(.5, desc="Length of hold required at targets") hold_penalty_time = traits.Float(1, desc="Length of penalty time for target hold error") timeout_time = traits.Float(10, desc="Time allowed to go between targets") timeout_penalty_time = traits.Float(1, desc="Length of penalty time for timeout error") max_attempts = traits.Int(10, desc='The number of attempts at a target before\ skipping to the next one') session_length = traits.Float(0, desc="Time until task automatically stops. Length of 0 means no auto stop.") marker_num = traits.Int(14, desc="The index of the motiontracker marker to use for cursor position") arm_hide_rate = traits.Float(0.0, desc='If the arm is visible, specifies a percentage of trials where it will be hidden') target_index = 0 # Helper variable to keep track of whether trial is instructed (1 = 1 choice) or free-choice (2 = 2 choices) target_selected = 'L' # Helper variable to indicate which target was selected tries = 0 # Helper variable to keep track of the number of failed attempts at a given trial. timedout = False # Helper variable to keep track if transitioning from timeout_penalty reward_counter = 0.0 cursor_visible = False # Determines when to hide the cursor. no_data_count = 0 # Counter for number of missing data frames in a row scale_factor = 3.0 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) starting_dist = 10.0 # starting distance from center target #color_targets = np.random.randint(2) color_targets = 1 # 0: yellow low, blue high; 1: blue low, yellow high stopped_center_hold = False #keep track if center hold was released early limit2d = 1 color1 = target_colors['purple'] # approach color color2 = target_colors['lightsteelblue'] # avoid color reward_color = target_colors['green'] # color of reward bar airpuff_color = target_colors['red'] # color of airpuff bar sequence_generators = ['colored_targets_with_probabilistic_reward','block_probabilistic_reward','colored_targets_with_randomwalk_reward','randomwalk_probabilistic_reward'] def __init__(self, *args, **kwargs): super(ApproachAvoidanceTask, self).__init__(*args, **kwargs) self.cursor_visible = True # Add graphics models for the plant and targets to the window self.plant = plantlist[self.plant_type] self.plant_vis_prev = True # Add graphics models for the plant and targets to the window if hasattr(self.plant, 'graphics_models'): for model in self.plant.graphics_models: self.add_model(model) self.current_pt=np.zeros([3]) #keep track of current pt self.last_pt=np.zeros([3]) #kee ## Declare cursor #self.dtype.append(('cursor', 'f8', (3,))) if 0: #hasattr(self.arm, 'endpt_cursor'): self.cursor = self.arm.endpt_cursor else: self.cursor = Sphere(radius=self.cursor_radius, color=self.cursor_color) self.add_model(self.cursor) self.cursor.translate(*self.get_arm_endpoint(), reset=True) ## Instantiate the targets. Target 1 is center target, Target H is target with high probability of reward, Target L is target with low probability of reward. self.target1 = Sphere(radius=self.target_radius, color=self.target_color) # center target self.add_model(self.target1) self.targetR = Sphere(radius=self.target_radius, color=self.target_color) # left target self.add_model(self.targetH) self.targetL = Sphere(radius=self.target_radius, color=self.target_color) # right target self.add_model(self.targetL) ###STOPPED HERE: should define Rect target here and then adapt length during task. Also, ### be sure to change all targetH instantiations to targetR. # Initialize target location variable. self.target_location1 = np.array([0,0,0]) self.target_locationR = np.array([-self.starting_dist,0,0]) self.target_locationL = np.array([self.starting_dist,0,0]) self.target1.translate(*self.target_location1, reset=True) self.targetH.translate(*self.target_locationR, reset=True) self.targetL.translate(*self.target_locationL, reset=True) # Initialize colors for high probability and low probability target. Color will not change. self.targetH.color = self.color_targets*self.color1 + (1 - self.color_targets)*self.color2 # high is magenta if color_targets = 1, juicyorange otherwise self.targetL.color = (1 - self.color_targets)*self.color1 + self.color_targets*self.color2 #set target colors self.target1.color = (1,0,0,.5) # center target red # Initialize target location variable self.target_location = np.array([0, 0, 0]) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.plant.hdf_attrs: self.add_dtype(*attr) def init(self): self.add_dtype('targetR', 'f8', (3,)) self.add_dtype('targetL','f8', (3,)) self.add_dtype('reward_scheduleR','f8', (1,)) self.add_dtype('reward_scheduleL','f8', (1,)) self.add_dtype('target_index', 'i', (1,)) super(ApproachAvoidanceTask, self).init() self.trial_allocation = np.zeros(1000) def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second. ''' ## Run graphics commands to show/hide the arm if the visibility has changed if self.plant_type != 'cursor_14x14': if self.arm_visible != self.arm_vis_prev: self.arm_vis_prev = self.arm_visible self.show_object(self.arm, show=self.arm_visible) self.move_arm() #self.move_plant() ## Save plant status to HDF file plant_data = self.plant.get_data_to_save() for key in plant_data: self.task_data[key] = plant_data[key] self.update_cursor() if self.plant_type != 'cursor_14x14': self.task_data['joint_angles'] = self.get_arm_joints() super(ApproachAvoidanceTask, self)._cycle() ## Plant functions def get_cursor_location(self): # arm returns it's position as if it was anchored at the origin, so have to translate it to the correct place return self.get_arm_endpoint() def get_arm_endpoint(self): return self.plant.get_endpoint_pos() def set_arm_endpoint(self, pt, **kwargs): self.plant.set_endpoint_pos(pt, **kwargs) def set_arm_joints(self, angles): self.arm.set_intrinsic_coordinates(angles) def get_arm_joints(self): return self.arm.get_intrinsic_coordinates() def update_cursor(self): ''' Update the cursor's location and visibility status. ''' pt = self.get_cursor_location() self.update_cursor_visibility() if pt is not None: self.move_cursor(pt) def move_cursor(self, pt): ''' Move the cursor object to the specified 3D location. ''' # if not hasattr(self.arm, 'endpt_cursor'): self.cursor.translate(*pt[:3],reset=True) ## ##### HELPER AND UPDATE FUNCTIONS #### def move_arm(self): ''' Returns the 3D coordinates of the cursor. For manual control, uses joystick data. If no joystick data available, returns None''' pt = self.joystick.get() if len(pt) > 0: pt = pt[-1][0] pt[0]=1-pt[0]; #Switch L / R axes calib = [0.497,0.517] #Sometimes zero point is subject to drift this is the value of the incoming joystick when at 'rest' if self.joystick_method==0: pos = np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) pos[0] = pos[0]*36 pos[2] = pos[2]*24 self.current_pt = pos elif self.joystick_method==1: vel=np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) epsilon = 2*(10**-2) #Define epsilon to stabilize cursor movement if sum((vel)**2) > epsilon: self.current_pt=self.last_pt+self.joystick_speed*vel*(1/60) #60 Hz update rate, dt = 1/60 else: self.current_pt = self.last_pt if self.current_pt[0] < -25: self.current_pt[0] = -25 if self.current_pt[0] > 25: self.current_pt[0] = 25 if self.current_pt[-1] < -14: self.current_pt[-1] = -14 if self.current_pt[-1] > 14: self.current_pt[-1] = 14 self.set_arm_endpoint(self.current_pt) self.last_pt = self.current_pt.copy() def convert_to_cm(self, val): return val/10.0 def update_cursor_visibility(self): ''' Update cursor visible flag to hide cursor if there has been no good data for more than 3 frames in a row''' prev = self.cursor_visible if self.no_data_count < 3: self.cursor_visible = True if prev != self.cursor_visible: self.show_object(self.cursor, show=True) self.requeue() else: self.cursor_visible = False if prev != self.cursor_visible: self.show_object(self.cursor, show=False) self.requeue() def calc_n_successfultrials(self): trialendtimes = np.array([state[1] for state in self.state_log if state[0]=='check_reward']) return len(trialendtimes) def calc_n_rewards(self): rewardtimes = np.array([state[1] for state in self.state_log if state[0]=='reward']) return len(rewardtimes) def calc_trial_num(self): '''Calculates the current trial count: completed + aborted trials''' trialtimes = [state[1] for state in self.state_log if state[0] in ['wait']] return len(trialtimes)-1 def calc_targetH_num(self): '''Calculates the total number of times the high-value target was selected''' trialtimes = [state[1] for state in self.state_log if state[0] in ['hold_targetH']] return len(trialtimes) - 1 def calc_rewards_per_min(self, window): '''Calculates the Rewards/min for the most recent window of specified number of seconds in the past''' rewardtimes = np.array([state[1] for state in self.state_log if state[0]=='reward']) if (self.get_time() - self.task_start_time) < window: divideby = (self.get_time() - self.task_start_time)/sec_per_min else: divideby = window/sec_per_min return np.sum(rewardtimes >= (self.get_time() - window))/divideby def calc_success_rate(self, window): '''Calculates the rewarded trials/initiated trials for the most recent window of specified length in sec''' trialtimes = np.array([state[1] for state in self.state_log if state[0] in ['reward', 'timeout_penalty', 'hold_penalty']]) rewardtimes = np.array([state[1] for state in self.state_log if state[0]=='reward']) if len(trialtimes) == 0: return 0.0 else: return float(np.sum(rewardtimes >= (self.get_time() - window)))/np.sum(trialtimes >= (self.get_time() - window)) def update_report_stats(self): '''Function to update any relevant report stats for the task. Values are saved in self.reportstats, an ordered dictionary. Keys are strings that will be displayed as the label for the stat in the web interface, values can be numbers or strings. Called every time task state changes.''' super(ApproachAvoidanceTask, self).update_report_stats() self.reportstats['Trial #'] = self.calc_trial_num() self.reportstats['Reward/min'] = np.round(self.calc_rewards_per_min(120),decimals=2) self.reportstats['High-value target selections'] = self.calc_targetH_num() #self.reportstats['Success rate'] = str(np.round(self.calc_success_rate(120)*100.0,decimals=2)) + '%' start_time = self.state_log[0][1] rewardtimes=np.array([state[1] for state in self.state_log if state[0]=='reward']) if len(rewardtimes): rt = rewardtimes[-1]-start_time else: rt= np.float64("0.0") sec = str(np.int(np.mod(rt,60))) if len(sec) < 2: sec = '0'+sec self.reportstats['Time Of Last Reward'] = str(np.int(np.floor(rt/60))) + ':' + sec #### TEST FUNCTIONS #### def _test_enter_center(self, ts): #return true if the distance between center of cursor and target is smaller than the cursor radius d = np.sqrt((self.cursor.xfm.move[0]-self.target_location1[0])**2 + (self.cursor.xfm.move[1]-self.target_location1[1])**2 + (self.cursor.xfm.move[2]-self.target_location1[2])**2) #print 'TARGET SELECTED', self.target_selected return d <= self.target_radius - self.cursor_radius def _test_enter_targetL(self, ts): if self.target_index == 1 and self.LH_target_on[0]==0: #return false if instructed trial and this target is not on return False else: #return true if the distance between center of cursor and target is smaller than the cursor radius d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationL[0])**2 + (self.cursor.xfm.move[1]-self.target_locationL[1])**2 + (self.cursor.xfm.move[2]-self.target_locationL[2])**2) self.target_selected = 'L' #print 'TARGET SELECTED', self.target_selected return d <= self.target_radius - self.cursor_radius def _test_enter_targetH(self, ts): if self.target_index ==1 and self.LH_target_on[1]==0: return False else: #return true if the distance between center of cursor and target is smaller than the cursor radius d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationH[0])**2 + (self.cursor.xfm.move[1]-self.target_locationH[1])**2 + (self.cursor.xfm.move[2]-self.target_locationH[2])**2) self.target_selected = 'H' #print 'TARGET SELECTED', self.target_selected return d <= self.target_radius - self.cursor_radius def _test_leave_early_center(self, ts): # return true if cursor moves outside the exit radius (gives a bit of slack around the edge of target once cursor is inside) d = np.sqrt((self.cursor.xfm.move[0]-self.target_location1[0])**2 + (self.cursor.xfm.move[1]-self.target_location1[1])**2 + (self.cursor.xfm.move[2]-self.target_location1[2])**2) rad = self.target_radius - self.cursor_radius return d > rad def _test_leave_early_L(self, ts): # return true if cursor moves outside the exit radius (gives a bit of slack around the edge of target once cursor is inside) d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationL[0])**2 + (self.cursor.xfm.move[1]-self.target_locationL[1])**2 + (self.cursor.xfm.move[2]-self.target_locationL[2])**2) rad = self.target_radius - self.cursor_radius return d > rad def _test_leave_early_H(self, ts): # return true if cursor moves outside the exit radius (gives a bit of slack around the edge of target once cursor is inside) d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationH[0])**2 + (self.cursor.xfm.move[1]-self.target_locationH[1])**2 + (self.cursor.xfm.move[2]-self.target_locationH[2])**2) rad = self.target_radius - self.cursor_radius return d > rad def _test_hold_center_complete(self, ts): return ts>=self.hold_time def _test_hold_complete(self, ts): return ts>=self.hold_time def _test_timeout(self, ts): return ts>self.timeout_time def _test_timeout_penalty_end(self, ts): return ts>self.timeout_penalty_time def _test_hold_penalty_end(self, ts): return ts>self.hold_penalty_time def _test_trial_complete(self, ts): #return self.target_index==self.chain_length-1 return not self.timedout def _test_trial_incomplete(self, ts): return (not self._test_trial_complete(ts)) and (self.tries<self.max_attempts) def _test_trial_abort(self, ts): return (not self._test_trial_complete(ts)) and (self.tries==self.max_attempts) def _test_yes_reward(self,ts): if self.target_selected == 'H': #reward_assigned = self.targs[0,1] reward_assigned = self.rewardH else: #reward_assigned = self.targs[1,1] reward_assigned = self.rewardL if self.reward_SmallLarge==1: self.reward_time = reward_assigned*self.reward_time_large + (1 - reward_assigned)*self.reward_time_small # update reward time if using Small/large schedule reward_assigned = 1 # always rewarded return bool(reward_assigned) def _test_no_reward(self,ts): if self.target_selected == 'H': #reward_assigned = self.targs[0,1] reward_assigned = self.rewardH else: #reward_assigned = self.targs[1,1] reward_assigned = self.rewardL if self.reward_SmallLarge==True: self.reward_time = reward_assigned*self.reward_time_large + (1 - reward_assigned)*self.reward_time_small # update reward time if using Small/large schedule reward_assigned = 1 # always rewarded return bool(not reward_assigned) def _test_reward_end(self, ts): time_ended = (ts > self.reward_time) self.reward_counter = self.reward_counter + 1 return time_ended def _test_stop(self, ts): if self.session_length > 0 and (time.time() - self.task_start_time) > self.session_length: self.end_task() return self.stop #### STATE FUNCTIONS #### def show_object(self, obj, show=False): ''' Show or hide an object ''' if show: obj.attach() else: obj.detach() self.requeue() def _start_wait(self): super(ApproachAvoidanceTask, self)._start_wait() self.tries = 0 self.target_index = 0 # indicator for instructed or free-choice trial #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) #get target positions and reward assignments for this trial self.targs = self.next_trial if self.plant_type != 'cursor_14x14' and np.random.rand() < self.arm_hide_rate: self.arm_visible = False else: self.arm_visible = True #self.chain_length = self.targs.shape[0] #Number of sequential targets in a single trial #self.task_data['target'] = self.target_locationH.copy() assign_reward = np.random.randint(0,100,size=2) self.rewardH = np.greater(self.targs[0,1],assign_reward[0]) #print 'high value target reward prob', self.targs[0,1] self.rewardL = np.greater(self.targs[1,1],assign_reward[1]) #print 'TARGET GENERATOR', self.targs[0,] self.task_data['targetH'] = self.targs[0,].copy() self.task_data['reward_scheduleH'] = self.rewardH.copy() self.task_data['targetL'] = self.targs[1,].copy() self.task_data['reward_scheduleL'] = self.rewardL.copy() self.requeue() def _start_center(self): #self.target_index += 1 self.show_object(self.target1, True) self.show_object(self.cursor, True) # Third argument in self.targs determines if target is on left or right # First argument in self.targs determines if location is offset to farther distances offsetH = (2*self.targs[0,2] - 1)*(self.starting_dist + self.location_offset_allowed*self.targs[0,0]*4.0) moveH = np.array([offsetH,0,0]) offsetL = (2*self.targs[1,2] - 1)*(self.starting_dist + self.location_offset_allowed*self.targs[1,0]*4.0) moveL = np.array([offsetL,0,0]) self.targetL.translate(*moveL, reset=True) #self.targetL.move_to_position(*moveL, reset=True) ##self.targetL.translate(*self.targs[self.target_index], reset=True) self.show_object(self.targetL, True) self.target_locationL = self.targetL.xfm.move self.targetH.translate(*moveH, reset=True) #self.targetR.move_to_position(*moveR, reset=True) ##self.targetR.translate(*self.targs[self.target_index], reset=True) self.show_object(self.targetH, True) self.target_locationH = self.targetH.xfm.move # Insert instructed trials within free choice trials if self.trial_allocation[self.calc_trial_num()] == 1: #if (self.calc_trial_num() % 10) < (self.percentage_instructed_trials/10): self.target_index = 1 # instructed trial leftright_coinflip = np.random.randint(0,2) if leftright_coinflip == 0: self.show_object(self.targetL, False) self.LH_target_on = (0, 1) else: self.show_object(self.targetH, False) self.LR_coinflip = 0 self.LH_target_on = (1, 0) else: self.target_index = 2 # free-choice trial self.cursor_visible = True self.task_data['target_index'] = self.target_index self.requeue() def _start_target(self): #self.target_index += 1 #move targets to current location and set location attribute. Target1 (center target) position does not change. self.show_object(self.target1, False) #self.target_location1 = self.target1.xfm.move self.show_object(self.cursor, True) self.update_cursor() self.requeue() def _start_hold_center(self): self.show_object(self.target1, True) self.timedout = False self.requeue() def _start_hold_targetL(self): #make next target visible unless this is the final target in the trial #if 1 < self.chain_length: #self.targetL.translate(*self.targs[self.target_index+1], reset=True) # self.show_object(self.targetL, True) # self.requeue() self.show_object(self.targetL, True) self.timedout = False self.requeue() def _start_hold_targetH(self): #make next target visible unless this is the final target in the trial #if 1 < self.chain_length: #self.targetR.translate(*self.targs[self.target_index+1], reset=True) # self.show_object(self.targetR, True) # self.requeue() self.show_object(self.targetH, True) self.timedout = False self.requeue() def _end_hold_center(self): self.target1.radius = 0.7*self.target_radius # color target green def _end_hold_targetL(self): self.targetL.color = (0,1,0,0.5) # color target green def _end_hold_targetH(self): self.targetH.color = (0,1,0,0.5) # color target green def _start_hold_penalty(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.timedout = True self.requeue() self.tries += 1 #self.target_index = -1 def _start_timeout_penalty(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.timedout = True self.requeue() self.tries += 1 #self.target_index = -1 def _start_targ_transition(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.requeue() def _start_check_reward(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.requeue() def _start_reward(self): #super(ApproachAvoidanceTask, self)._start_reward() if self.target_selected == 'L': self.show_object(self.targetL, True) #reward_assigned = self.targs[1,1] else: self.show_object(self.targetH, True) #reward_assigned = self.targs[0,1] #self.reward_counter = self.reward_counter + float(reward_assigned) self.requeue() @staticmethod def colored_targets_with_probabilistic_reward(length=1000, boundaries=(-18,18,-10,10,-15,15),reward_high_prob=80,reward_low_prob=40): """ Generator should return array of ntrials x 2 x 3. The second dimension is for each target. For example, first is the target with high probability of reward, and the second entry is for the target with low probability of reward. The third dimension holds three variables indicating position offset (yes/no), reward probability (fixed in this case), and location (binary returned where the ouput indicates either left or right). UPDATE: CHANGED SO THAT THE SECOND DIMENSION CARRIES THE REWARD PROBABILITY RATHER THAN THE REWARD SCHEDULE """ position_offsetH = np.random.randint(2,size=(1,length)) position_offsetL = np.random.randint(2,size=(1,length)) location_int = np.random.randint(2,size=(1,length)) # coin flips for reward schedules, want this to be elementwise comparison #assign_rewardH = np.random.randint(0,100,size=(1,length)) #assign_rewardL = np.random.randint(0,100,size=(1,length)) high_prob = reward_high_prob*np.ones((1,length)) low_prob = reward_low_prob*np.ones((1,length)) #reward_high = np.greater(high_prob,assign_rewardH) #reward_low = np.greater(low_prob,assign_rewardL) pairs = np.zeros([length,2,3]) pairs[:,0,0] = position_offsetH #pairs[:,0,1] = reward_high pairs[:,0,1] = high_prob pairs[:,0,2] = location_int pairs[:,1,0] = position_offsetL #pairs[:,1,1] = reward_low pairs[:,1,1] = low_prob pairs[:,1,2] = 1 - location_int return pairs @staticmethod def block_probabilistic_reward(length=1000, boundaries=(-18,18,-10,10,-15,15),reward_high_prob=80,reward_low_prob=40): pairs = colored_targets_with_probabilistic_reward(length=length, boundaries=boundaries,reward_high_prob=reward_high_prob,reward_low_prob=reward_low_prob) return pairs @staticmethod def colored_targets_with_randomwalk_reward(length=1000,reward_high_prob=80,reward_low_prob=40,reward_high_span = 20, reward_low_span = 20,step_size_mean = 0, step_size_var = 1): """ Generator should return array of ntrials x 2 x 3. The second dimension is for each target. For example, first is the target with high probability of reward, and the second entry is for the target with low probability of reward. The third dimension holds three variables indicating position offset (yes/no), reward probability, and location (binary returned where the ouput indicates either left or right). The variables reward_high_span and reward_low_span indicate the width of the range that the high or low reward probability are allowed to span respectively, e.g. if reward_high_prob is 80 and reward_high_span is 20, then the reward probability for the high value target will be bounded between 60 and 100 percent. """ position_offsetH = np.random.randint(2,size=(1,length)) position_offsetL = np.random.randint(2,size=(1,length)) location_int = np.random.randint(2,size=(1,length)) # define variables for increments: amount of increment and in which direction (i.e. increasing or decreasing) assign_rewardH = np.random.randn(1,length) assign_rewardL = np.random.randn(1,length) assign_rewardH_direction = np.random.randn(1,length) assign_rewardL_direction = np.random.randn(1,length) r_0_high = reward_high_prob r_0_low = reward_low_prob r_lowerbound_high = r_0_high - (reward_high_span/2) r_upperbound_high = r_0_high + (reward_high_span/2) r_lowerbound_low = r_0_low - (reward_low_span/2) r_upperbound_low = r_0_low + (reward_low_span/2) reward_high = np.zeros(length) reward_low = np.zeros(length) reward_high[0] = r_0_high reward_low[0] = r_0_low eps_high = assign_rewardH*step_size_mean + [2*(assign_rewardH_direction > 0) - 1]*step_size_var eps_low = assign_rewardL*step_size_mean + [2*(assign_rewardL_direction > 0) - 1]*step_size_var eps_high = eps_high.ravel() eps_low = eps_low.ravel() for i in range(1,length): ''' assign_rewardH_direction = np.random.randn(1) assign_rewardL_direction = np.random.randn(1) assign_rewardH = np.random.randn(1) if assign_rewardH_direction[i-1,] < 0: eps_high = step_size_mean*assign_rewardH[i-1] - step_size_var else: eps_high = step_size_mean*assign_rewardH[i-1] + step_size_var if assign_rewardL_direction[i] < 0: eps_low = step_size_mean*assign_rewardL[i] - step_size_var else: eps_low = step_size_mean*assign_rewardL[i] + step_size_var ''' reward_high[i] = reward_high[i-1] + eps_high[i-1] reward_low[i] = reward_low[i-1] + eps_low[i-1] reward_high[i] = (r_lowerbound_high < reward_high[i] < r_upperbound_high)*reward_high[i] + (r_lowerbound_high > reward_high[i])*(r_lowerbound_high+ eps_high[i-1]) + (r_upperbound_high < reward_high[i])*(r_upperbound_high - eps_high[i-1]) reward_low[i] = (r_lowerbound_low < reward_low[i] < r_upperbound_low)*reward_low[i] + (r_lowerbound_low > reward_low[i])*(r_lowerbound_low+ eps_low[i-1]) + (r_upperbound_low < reward_low[i])*(r_upperbound_low - eps_low[i-1]) pairs = np.zeros([length,2,3]) pairs[:,0,0] = position_offsetH pairs[:,0,1] = reward_high pairs[:,0,2] = location_int pairs[:,1,0] = position_offsetL pairs[:,1,1] = reward_low pairs[:,1,2] = 1 - location_int return pairs @staticmethod def randomwalk_probabilistic_reward(length=1000,reward_high_prob=80,reward_low_prob=40,reward_high_span = 20, reward_low_span = 20,step_size_mean = 0, step_size_var = 1): pairs = colored_targets_with_randomwalk_reward(length=length,reward_high_prob=reward_high_prob,reward_low_prob=reward_low_prob,reward_high_span = reward_high_span, reward_low_span = reward_low_span,step_size_mean = step_size_mean, step_size_var = step_size_var) return pairs