class SOMTestAgent(Agent): """ A simple agent that receives 2D points and trains a kohonen SOM and a Growing Neural Gas with them. It produces no meanigful actions (i.e. it always emits 0). """ def __init__(self, **args): # Call the superclass constructor super(SOMTestAgent, self).__init__(**args) # instantiate a SOM self.som = SOM() # intialize SOM training N = SOMTestEnvironment.num_samples_per_distr * 5 self.som.init_training(radius_0=max(self.som.xdim, self.som.ydim), training_length=N) # instantiate a Growing Neural Gas self.gng = EquilibriumGNG() def __call__(self, sensation, reward=None): # On receiving input train the SOM and GNG. self.som.train(sensation) self.gng.train(sensation) # Return 0 for the action. return 0
class SOMTestAgent(Agent): """ A simple agent that receives 2D points and trains a kohonen SOM and a Growing Neural Gas with them. It produces no meanigful actions (i.e. it always emits 0). """ def __init__(self,**args): # Call the superclass constructor super(SOMTestAgent,self).__init__(**args) # instantiate a SOM self.som = SOM() # intialize SOM training N = SOMTestEnvironment.num_samples_per_distr * 5 self.som.init_training(radius_0 = max(self.som.xdim,self.som.ydim), training_length = N) # instantiate a Growing Neural Gas self.gng = EquilibriumGNG() def __call__(self,sensation,reward=None): # On receiving input train the SOM and GNG. self.som.train(sensation) self.gng.train(sensation) # Return 0 for the action. return 0
def __init__(self, **args): # Call the superclass constructor super(SOMTestAgent, self).__init__(**args) # instantiate a SOM self.som = SOM() # intialize SOM training N = SOMTestEnvironment.num_samples_per_distr * 5 self.som.init_training(radius_0=max(self.som.xdim, self.som.ydim), training_length=N) # instantiate a Growing Neural Gas self.gng = EquilibriumGNG()
def __init__(self,**args): # Call the superclass constructor super(SOMTestAgent,self).__init__(**args) # instantiate a SOM self.som = SOM() # intialize SOM training N = SOMTestEnvironment.num_samples_per_distr * 5 self.som.init_training(radius_0 = max(self.som.xdim,self.som.ydim), training_length = N) # instantiate a Growing Neural Gas self.gng = EquilibriumGNG()