Exemple #1
0
    def compile(self):
        # note: for now, only weapons define the entity's action space
        # note: for now, assets that a given entity can hold a single weapon
        self.action_space = []
        self.attack_action_space = []
        self.patrol_action_space = []
        self.attack_actions = []
        self.patrol_actions = []

        if len(self.weapons):
            # attack action map, constrained by the entity's weapon(s)
            attack_cells = coverage((10, 10), self.weapons[0]['weapon_range'])
            self.attack_action_space = [
                'attack_{}x{}'.format(x, y) for (x, y) in attack_cells
            ]
            self.attack_actions = list(range(0, len(attack_cells)))

        # patrol action map, constrained by the entity's properties
        patrol_cells = coverage((10, 10), self.properties['mobility'])
        self.patrol_action_space = [
            'patrol_{}x{}'.format(x, y) for (x, y) in patrol_cells
        ]
        self.patrol_actions = list(
            range(len(self.attack_actions),
                  len(self.attack_actions) + len(patrol_cells)))

        self.action_space = self.attack_action_space + self.patrol_action_space
        self.n_actions = len(self.action_space)
Exemple #2
0
def encode_objectives(objectives, minimap, detections, shape):
    xys = {}
    for obj in objectives:
        # if a single objective has multiple areas of interest
        if isinstance(obj.aoi, list):
            for aoi in obj.aoi:
                for (x, y) in coverage(aoi['xy'], aoi['radius'], shape):
                    xys[(x, y)] = obj.obj_type
        if not isinstance(obj.aoi, list) and obj.aoi:
            xys = {
                (x, y): obj.obj_type
                for (x, y) in coverage(obj.aoi['xy'], obj.aoi['radius'], shape)
            }

        # only encode an aoi if it is not attached to an eoi that we have not detected
        if obj.eoi:
            for xy, obj_type in xys.items():
                if xy in [ent.xy for ent in detections]:
                    xys[xy] = obj_type

        for ((x, y), obj_type) in xys.items():
            minimap[
                global_features.index('{}_area_of_interest'.format(obj_type)),
                x, y] += 1

    return minimap
Exemple #3
0
def filter_objectives(objectives):
    xys = []
    for obj in objectives:
        # if a single objective has multiple areas of interest
        if isinstance(obj.aoi, list):
            for aoi in obj.aoi:
                for xy in coverage(aoi['xy'], aoi['radius'], shape):
                    xys += [xy]
        else:
            xys += [
                xy for xy in coverage(obj.aoi['xy'], obj.aoi['radius'], shape)
            ]
    return xys
    def __call__(self, entities, timer, *args, **kwargs):
        enemies = kwargs['enemies']
        whites = [
            ent.xy in coverage(self.aoi['xy'], self.aoi['radius'])
            for ent in entities.values() if ent.operational
        ]
        blacks = [
            ent.xy in coverage(self.aoi['xy'], self.aoi['radius'])
            for ent in enemies.values() if ent.operational
        ]

        self.reward = len(whites) - len(blacks)

        return False
 def __call__(self, entities, *args, **kwargs):
     if any([
             ent.xy in coverage(self.aoi['xy'], self.aoi['radius'])
             for ent in entities.values()
     ]):
         self.reward += 1
         return True
     return False
Exemple #6
0
 def observe_detections(self):
     self.white_detections, self.black_detections = [], []
     for white in self.whites.values():
         for black in self.blacks.values():
             operational = white.operational and black.operational
             white_cells = coverage(white.xy,
                                    white.properties['visibility'],
                                    self.shape)
             black_cells = coverage(black.xy,
                                    black.properties['visibility'],
                                    self.shape)
             if black.xy in white_cells and operational:
                 self.white_detections += [black]
             if white.xy in black_cells and operational:
                 self.white_detections += [white]
     self.white_detections = set(self.white_detections)
     self.black_detections = set(self.black_detections)
 def __call__(self, entities, *args, **kwargs):
     self.reward = 0
     self.eoi = kwargs['enemies']
     self.aoi = [{'xy':ent.xy, 'radius':1} for ent in self.eoi.values()]
     drones = [ent for ent in entities.values() if ent.entity_type == 'drone']
     for xy in [target.xy for target in self.eoi.values()]:
         for drone in drones:
             if xy in coverage(drone.xy, drone.properties['visibility']):
                 self.reward += 1
     return False
Exemple #8
0
def patrol(entity, action, terrain, verbose=False):
    idx = entity.patrol_actions.index(action)
    cells = coverage(entity.xy, entity.properties['mobility'],
                     terrain[0].shape)

    try:
        cell = cells[idx]
    except:
        cell = entity.xy if not len(cells) else cells[0]

    return cell
Exemple #9
0
def attack(entity, action, damage_map, verbose=False):
    idx = entity.attack_actions.index(action)

    weapon_model = entity.weapons[0]
    cells = coverage(entity.xy, weapon_model['weapon_range'], damage_map.shape)

    try:
        if len(cells) < action:
            ij = random.choice(cells)
        else:
            ij = cells[action]

            for (x, y) in coverage(ij, weapon_model['weapon_radius'],
                                   damage_map.shape):
                if weapon_model['weapon_accuracy'] < np.random.random():
                    damage_map[x, y] += weapon_model['weapon_power']
    except:
        pass

    return damage_map
Exemple #10
0
    def __call__(self, entities, timer, *args, **kwargs):
        if any([
                ent.xy in coverage(self.aoi['xy'], self.aoi['radius'])
                for ent in entities.values() if ent.operational
        ]):
            self.reward = 1
        else:
            self.reward = 0

        if self.reward > self.criterion: return True
        else: return False
Exemple #11
0
    def __call__(self, entities, *args, **kwargs):
        self.reward = 0
        self.eoi = kwargs['enemies']

        cells = []
        for ent in self.eoi.values():
            for xy in coverage(ent.xy, ent.properties['visibility']):
                cells.append(xy)

        for xy in [
                ent.xy for ent in entities.values()
                if ent.entity_type not in ['drone']
        ]:
            if xy in set(cells): self.reward -= 0.1

        if self.reward / 10 == len([
                ent for ent in entities.values()
                if ent.entity_type not in ['drone'] and ent.operational
        ]):
            return True

        return False
Exemple #12
0
    def observation(self, positive, negative=None):
        minimap = np.zeros((len(global_features), *self.shape))

        minimap[global_features.index('land'), :] = self.land
        minimap[global_features.index('air'), :] = self.air
        minimap[global_features.index('sea'), :] = self.sea

        for ent in positive.values():
            x, y = ent.xy[0], ent.xy[1]

            minimap[global_features.index(ent.entity_type), x, y] += 1

            if ent.weapons:
                weapon_model = ent.weapons[0]

                minimap[global_features.index('weapon_power'), x,
                        y] += weapon_model['weapon_power']

                for xy in coverage(ent.xy, weapon_model['weapon_range'],
                                   self.shape):
                    for (i, j) in coverage(xy, weapon_model['weapon_radius'],
                                           self.shape):
                        minimap[global_features.index('weapon_radius'), i,
                                j] += weapon_model['weapon_radius']

                for (x, y) in coverage(ent.xy, weapon_model['weapon_range'],
                                       self.shape):
                    minimap[global_features.index('weapon_range'), x,
                            y] += weapon_model['weapon_range']

            if ent.sensors:
                sensor_model = ent.sensors[0]
                minimap[global_features.index('sensor_coverage'), x,
                        y] += sensor_model['sensor_coverage']
                for (x, y) in coverage(ent.xy, sensor_model['sensor_range'],
                                       self.shape):
                    minimap[global_features.index('sensor_range'), x,
                            y] += weapon_model['sensor_range']

            minimap[global_features.index('durability'), x,
                    y] += ent.properties['durability']

            for (x, y) in coverage(ent.xy, ent.properties['mobility'],
                                   self.shape):
                minimap[global_features.index('mobility'), x,
                        y] += (1 - ent.properties['mobility'])

            for (x, y) in coverage(ent.xy, ent.properties['visibility'],
                                   self.shape):
                minimap[global_features.index('visibility'), x,
                        y] += ent.properties['visibility']

        if any([ent.id in self.blacks.keys() for ent in positive.values()]):
            dets, kills, casts = self.white_detections, self.white_casualties, self.black_casualties
        else:
            dets, kills, casts = self.black_detections, self.black_casualties, self.white_casualties
            minimap = encode_objectives(self.objectives, minimap,
                                        self.white_detections, self.shape)

        for ent in dets:
            x, y = ent.xy
            minimap[global_features.index(ent.entity_type + '_detections'), x,
                    y] += 1
        for ent in kills:
            x, y = ent.xy
            minimap[global_features.index('positive_casualties'), x, y] += 1
        for ent in casts:
            x, y = ent.xy
            minimap[global_features.index('negative_casualties'), x, y] += 1

        return minimap