Exemple #1
0
def net1():
    l0 = plonny.Input((32, 32, 1))

    la1 = plonny.Conv2D([l0], (8, 8, 40), (3, 3))
    la2 = plonny.Custom((8, 8, 40), "Text\nembeds", [la1])

    l1 = plonny.Conv2D([l0], (32, 32, 40), (3, 3))
    l2 = plonny.Pool((16, 16, 40), [l1])
    l3 = plonny.Conv2D([l2], (16, 16, 40), (3, 3))
    l4 = plonny.Pool((8, 8, 40), [l3])
    l5 = plonny.Conv2D([l4, la2], (8, 8, 40), (3, 3))
    l6 = plonny.Upsample((32, 32, 40), [l5])

    lg = layergrid.LayerGrid()
    lg.set(0, 0, l0)
    lg.set(1, 0, l0)

    lg.set(0, 1, l1)
    lg.set(0, 2, l2)
    lg.set(0, 3, l3)
    lg.set(0, 4, l4)

    lg.set(0, 5, l5)
    lg.set(1, 5, l5)

    lg.set(1, 2, la1)
    lg.set(1, 3, la2)

    lg.set(0, 6, l6)
    lg.set(1, 6, l6)
    # print(lg.get_row(0))
    print(lg)

    graph.Graph(lg).graphshow()
Exemple #2
0
def net3():
    l0 = plonny.Input(
        (64, 64, 3),
        img="./tmp/rois/h15m34s15_class=BaseTech_p=1_used=False.jpg")
    l1 = plonny.Conv2D([l0], (64, 64, 64), (5, 5))
    l2 = plonny.Pool((32, 32, 64), [l1])
    l3 = plonny.Conv2D([l2], (32, 32, 128), (5, 5))
    l4 = plonny.Pool((16, 16, 64), [l3])
    # l5 = plonny.Reshape((1, 32768), [l3])
    l5 = plonny.Fluid((1, 92), "Reshape", 32768,
                      [l4])  #shape, name, actual_size=5, layers=None
    l6 = plonny.FullyConnected([l5], 2048)
    # l6 = plonny.Dropout((1, 2048), [l5])
    l7 = plonny.Dropout([l6], 2048)
    l8 = plonny.FullyConnected([l7], 5)

    lg = layergrid.LayerGrid()
    lg.set(0, 0, l0)
    lg.set(0, 1, l1)
    lg.set(0, 2, l2)
    lg.set(0, 3, l3)
    lg.set(0, 4, l4)
    # lg.set(1,1,l0)
    lg.set(0, 5, l5)
    lg.set(0, 6, l6)
    lg.set(0, 7, l7)
    # lg.set(0,6,l8)
    lg.set(0, 8, l8)

    print(lg)
    graph.Graph(lg).graphshow("Box classifier")
Exemple #3
0
def net2():
    l0 = plonny.Input((400, 600, 1))
    l1 = plonny.Conv2D([l0], (400, 600, 32), (3, 3))
    l2 = plonny.Pool((200, 300, 32), [l1])
    l3 = plonny.Conv2D([l2], (200, 300, 64), (3, 3))
    l4 = plonny.Pool((100, 150, 64), [l3])

    l41 = plonny.Custom((100, 150, 1), "Feature\n  Map", [l4])
    l42 = plonny.Custom((100, 150, 1), "Feature\n  Map", [l4])
    l43 = plonny.Custom((100, 150, 1), "Feature\n  Map", [l4])
    l44 = plonny.Custom((100, 150, 1), "Feature\n  Map", [l4])

    l5 = plonny.FullyConnected([l41, l42, l43, l44], 64)
    l6 = plonny.Custom((1, 1), "LSTM", [l5])

    lg = layergrid.LayerGrid()
    lg.set(0, 0, l0)
    lg.set(0, 1, l1)

    lg.set(0, 2, l2)
    lg.set(0, 3, l3)
    lg.set(0, 4, l4)
    lg.set(0, 5, l41)

    lg.set(1, 5, l42)
    lg.set(2, 5, l43)

    lg.set(3, 5, l44)
    lg.set(0, 6, l5)

    lg.set(0, 7, l6)

    print(lg)
    graph.Graph(lg).graphshow()
Exemple #4
0
                     size=16)

        GraphParam.txt_height = maxheight - 2 * GraphParam.txt_margin

        # Iterate layers, plotting their output shapes
        for row in grid.rows():
            for layer in row:
                layer.show(ax, layer.inbound)

        plt.show()


if __name__ == "__main__":
    l0 = plonny.Input((32, 32, 1))
    l02 = plonny.Input((32, 32, 1))
    l1 = plonny.Conv2D([l0, l02], (16, 16, 1), (3, 3))
    l2 = plonny.Conv2D([l1], (32, 32, 1), (3, 3))
    l3 = plonny.Conv2D([l2], (32, 32, 1), (3, 3))
    l4 = plonny.Conv2D([l3], (32, 32, 1), (3, 3))
    l5 = plonny.Conv2D([l4], (32, 32, 1), (3, 3))

    l22 = plonny.Conv2D([l1], (32, 32, 1), (3, 3))

    lg = LayerGrid()
    lg.set(0, 0, l0)
    lg.set(1, 0, l02)
    lg.set(0, 1, l1)
    lg.set(0, 2, l2)
    lg.set(1, 2, l22)
    # lg.set(0, 2, l2)
    # lg.set(0, 3, l3)
Exemple #5
0
import plonny

if __name__ == "__main__":
    # Define model by calling layers
    image_0 = plonny.Input((32, 128, 1))

    conv2_1 = plonny.Conv2D(image_0, (32, 128, 16), (3, 3))
    Pool_2 = plonny.Pool(conv2_1, (16, 64, 16))

    conv2_3 = plonny.Conv2D(Pool_2, (16, 64, 64), (3, 3))
    Pool_4 = plonny.Pool(conv2_3, (8, 32, 64))

    conv2_5 = plonny.Conv2D(Pool_4, (8, 32, 64), (9, 9))
    Pool_6 = plonny.Pool(conv2_5, (4, 16, 64))

    conv2_7 = plonny.Conv2D(Pool_6, (4, 16, 64), (3, 3))
    conv2_8 = plonny.Conv2D(conv2_7, (4, 16, 16), (3, 3))
    conv2_9 = plonny.Conv2D(conv2_8, (4, 16, 7), (3, 3))

    resh_10 = plonny.Reshape(conv2_9, (8, 56))
    conv_11 = plonny.Conv2D(resh_10, (8, 28), (3, 3))

    fccc_12 = plonny.FullyConnected(conv_11, 8)

    fccc_13 = plonny.FullyConnected(fccc_12, 50)

    fccc_13.graphshow("Neural Network")