fig.suptitle('JS diverence, clustering = all times') if fig_dir is not None: fig.savefig( os.path.join(fig_dir, 'JSD_time_clustering_tbins=%d.pdf' % (tbins))) ### Manifold embeddings reload(fplt) plt.figure(200) plt.clf() #label = range(tbins) * nstrains #label = list(np.sort(range(nstages) * sbins)) * nstrains label = np.sort(range(nstrains) * tbins) res = fplt.plot_manifold_embeddings(ent_t['all'], precomputed=True, label=label) reload(fplt) fig = plt.figure(50) plt.clf() label = np.sort(range(nstrains) * tbins) colors = ['red', 'blue', 'darkgreen', 'orange', 'purple', 'gray'] cmaps = [ plt.cm.Reds, plt.cm.Blues, plt.cm.Greens, plt.cm.Oranges, plt.cm.Purples, plt.cm.gray_r ] i = 0 for k, v, in res.iteritems(): plt.subplot(1, 3, i + 1) i += 1
plt.plot(dat_mean) plt.plot(dat_var) reload(als) reload(fplt) plt.figure(10); plt.clf() fplt.plot_pca(dist.T) plt.figure(11); plt.clf(); fplt.plot_nmf(dist.T, n_components=None) reload(fplt) plt.figure(20); fplt.plot_manifold_embeddings(dist.T, n_components=3, n_neighbors=20) plt.tight_layout() ### Fit distributions #dist_names = ['gamma', 'beta', 'rayleigh', 'norm', 'pareto' import scipy; dist_name = 'beta'; dist_form = getattr(scipy.stats, dist_name) param = np.zeros((dist_form.numargs + 2, nbins)); eps = 10e-9; for b in range(1): dd = dat_bin[:,b].copy();