Exemple #1
0
    def initial_pool(self):

        
        initial_wrapper = _Initialpoolsampling(self.eps0 , self.data, self.model, \
                                               self.distance , self.prior_dict)
                                         
        #print wrapper
        #print wrapper(1)

        if self.N_threads == 1:
            results   = []
            for i in range(self.N_particles):

                results.append(initial_wrapper(i))
        else:

            self.pool = Pool(self.N_threads)
            self.mapfn  = self.pool.map
            results = self.mapfn(initial_wrapper , range(self.N_particles))
	    self.pool.close()
            #self.pool.terminate()
            #self.pool.join()

        results = np.array(results).T
        self.theta_t = results[1:self.n_params+1,:]
        self.w_t = results[self.n_params+1,:]
        self.rhos = results[self.n_params+2,:]
        self.sig_t = 2. * utils.covariance(self.theta_t , self.w_t)

        plot_thetas(self.theta_t, self.w_t, self.prior_dict, 0,
                    basename=self.basename)
Exemple #2
0
    def initial_pool(self):

        
        initial_wrapper = _Initialpoolsampling(self.eps0 , self.data, self.model, \
                                               self.distance , self.prior_dict)
                                         
        #print wrapper
        #print wrapper(1)

        if self.N_threads == 1:
            results   = []
            for i in range(self.N_particles):

                results.append(initial_wrapper(i))
        else:

            self.pool = Pool(self.N_threads)
            self.mapfn  = self.pool.map
            results = self.mapfn(initial_wrapper , range(self.N_particles))
	    self.pool.close()
            #self.pool.terminate()
            #self.pool.join()

        results = np.array(results).T
        self.theta_t = results[1:self.n_params+1,:]
        self.w_t = results[self.n_params+1,:] / self.N_particles
        self.rhos = results[self.n_params+2:,:]
        self.sig_t = 2. * utils.covariance(self.theta_t , self.w_t)

        plot_thetas(self.theta_t, self.w_t, self.prior_dict, 0,
                    basename=self.basename)
Exemple #3
0
    def run_abc(self):
        """
        Run PMC_ABC
        """

        self.initial_pool()
        t = 1

        
        while t < self.T:
            
            self.eps_t = np.percentile(self.rhos, 75)
            print "iteration= " , t , "threshold= " , self.eps_t
           
            importance_wrapper = _Importancepoolsampling(self.eps_t, self.data, self.model, \
                                                         self.distance, self.prior_dict, \
                                                         self.theta_t, self.w_t, self.sig_t) 

            if self.N_threads == 1 :
                results   = []
                for i in range(self.N_particles):

                    results.append(importance_wrapper(i))
            else:

                self.pool = Pool(self.N_threads)
                self.mapfn  = self.pool.map
                results = self.mapfn(importance_wrapper, range(self.N_particles))
                self.pool.close()
                #self.pool.terminate()
                #self.pool.join()

            results = np.array(results).T

            self.theta_t = results[1:self.n_params+1,:]
            self.w_t = results[self.n_params+1,:]
            self.rhos = results[self.n_params+2,:]
            self.sig_t = 2. * utils.covariance(self.theta_t, self.w_t)

            plot_thetas(self.theta_t, self.w_t, self.prior_dict, t,
                        basename=self.basename,
                        fig_name="{0}_{1}.png".format(self.basename, str(t)))

            t += 1
Exemple #4
0
    def run_abc(self):
        """
        Run PMC_ABC
        """

        self.initial_pool()
        t = 1

        
        while t < self.T:
            
            self.eps_t = np.percentile(np.atleast_2d(self.rhos), 75, axis=1)
            print "iteration= " , t , "threshold= " , self.eps_t
           
            importance_wrapper = _Importancepoolsampling(self.eps_t, self.data, self.model, \
                                                         self.distance, self.prior_dict, \
                                                         self.theta_t, self.w_t, self.sig_t) 

            if self.N_threads == 1 :
                results   = []
                for i in range(self.N_particles):

                    results.append(importance_wrapper(i))
            else:

                self.pool = Pool(self.N_threads)
                self.mapfn  = self.pool.map
                results = self.mapfn(importance_wrapper, range(self.N_particles))
                self.pool.close()
                #self.pool.terminate()
                #self.pool.join()

            results = np.array(results).T

            self.theta_t = results[1:self.n_params+1,:]
            self.w_t = results[self.n_params+1,:]
            self.rhos = results[self.n_params+2:,:]
            self.sig_t = 2. * utils.covariance(self.theta_t, self.w_t)

            plot_thetas(self.theta_t, self.w_t, self.prior_dict, t,
                        basename=self.basename,
                        fig_name="{0}_{1}.png".format(self.basename, str(t)))

            t += 1