def plot_matrices(theta): for name, mat in theta.iteritems(): if 'M' in name: pt.showmat(mat, cb=True) pt.title(name) if outDir: pt.save_figure(None, False, outDir, 'matrix_' + name[0]) else: pt.show(None, False)
def plot_for_subtree2(nw, theta, n=0): fig, ax = pt.new_fig() pt.equal_aspects(ax) M = theta[('composition', '#X#', '(#X#, #X#, #X#)', 'I', 'M')] mbits = np.split(M, 3, axis=1) B = theta[('composition', '#X#', '(#X#, #X#, #X#)', 'I', 'B')] children = nw.inputs reps = [c.a for c in children] projs = [mbits[i].dot(reps[i]) for i in range(3)] names = [] for c in children: try: names.append(c.key) except: names.append(str(c)) names.append('bias') now = np.array([0, 0]) for i, proj in enumerate(projs + [B]): nnow = now + proj pt.scatter_and_annotate(ax, nnow, projColors[i], '', alpha=0) if i == 0: postfix = 'L' elif i == 1: postfix = 'M' elif i == 2: postfix = 'R' else: postfix = '' pt.draw_arrow(ax, now, nnow, label=names[i] + postfix, color=projColors[i], alpha=0.6, head=0.1) now = nnow pt.scatter_and_annotate(ax, nnow, projColors[i], '') # print nw.a-myActivation.activate(now,'tanh')[0], 'should be (close to) zero' # pt.scatter_and_annotate(ax, now , 'black', 'sum') pt.scatter_and_annotate(ax, nw.a, eC, str(nw), pos='bot') pt.draw_arrow(ax, now, nw.a, label='squash', color='black', alpha=0.6, head=0.1) pt.put_origin(ax) pt.minimal_ticks(ax) if outDir: pt.save_figure(ax, False, outDir, 'example' + str(n) + 'All') else: pt.show(ax, False)
def plot_comparison(theta): try: left, right = np.split(theta[('comparison', 'M')], 2, axis=1) except: print 'no comparison matrix in theta' return mtb = arithmetics.training_treebank( args['seed'], languages={'L9': 25}, ) rnnTB = data.RNNTB(mtb.examples) colors = pt.colorscale(120) rnn, tar = rnnTB.examples[0] rep = rnn.activate(theta) d = len(rep) for i in range(d): for j in range(i + 1, d): fig, ax = pt.new_fig() for rnn, tar in rnnTB.get_examples(): rep = rnn.activate(theta) leftie = left.dot(rep) rightie = right.dot(rep) # print leftie.shape, rightie.shape # pt.scatter_and_annotate(ax, rep, color=colors(tar+60), label=tar, size=8, txtcolor='black') pt.scatter_and_annotate(ax, (leftie[i], leftie[j]), color=colors(tar + 60), label=str(tar) + 'L', size=8, txtcolor='black') pt.scatter_and_annotate(ax, (rightie[i], rightie[j]), color=colors(tar + 60), label=str(tar) + 'R', size=8, txtcolor='black') pt.title('Effect of comparison layer on L9 expressions, dims ' + str(i) + '-' + str(j)) if outDir: pt.save_figure(ax, True, outDir, 'comparison' + str(i) + str(j)) else: pt.show(ax, True)
def plot_embs(theta): wm = theta[('word', )] mbits = np.split(theta[('composition', '#X#', '(#X#, #X#, #X#)', 'I', 'M')], 3, axis=1) fig, ax = pt.new_fig() ranges = [pt.colorscale(20, projColors[i]) for i in range(3)] for w, v in wm.iteritems(): if w[-1].isdigit(): pt.scatter_and_annotate(ax, point=v, label=w, color=eC, pos='right') for i in [0, 2]: proj = mbits[i].dot(v) pt.draw_arrow(ax, v, proj, label='', color=projColors[i], head=0, alpha=0.3) if int(w) in [-10, -5, 0, 5, 10]: label = w + ('L' if i == 0 else 'R') else: label = '' pt.scatter_and_annotate(ax, point=proj, label=label, color=ranges[i](int(w) + 10), pos=('left' if i == 2 else 'right')) else: print w pt.title('Effect of composition as left or right child on embeddings') pt.improve_ticks(ax) if outDir: pt.save_figure(ax, True, outDir, 'embs') else: pt.show(ax, True)
def plot_for_subtree(ax, nw, theta, n=0): M = theta[('composition', '#X#', '(#X#, #X#, #X#)', 'I', 'M')] mbits = np.split(M, 3, axis=1) B = theta[('composition', '#X#', '(#X#, #X#, #X#)', 'I', 'B')] children = nw.inputs reps = [c.a for c in children] projs = [mbits[i].dot(reps[i]) for i in range(3)] names = [] for c in children: try: names.append(c.key) except: names.append(str(c)) names.append('bias') # plot Project stuff = [ pt.scatter_and_annotate(ax, reps[i], eC, names[i]) for i in range(3) ] stuff += [ pt.scatter_and_annotate(ax, projs[i], projColors[i], names[i] + '\'') for i in range(3) ] stuff += [ pt.draw_arrow(ax, reps[i], projs[i], label='project' + ('L' if i == 0 else ('R' if i == 2 else '')), color=projColors[i], alpha=0.3, head=0.1) for i in range(3) ] n += 1 if outDir: pt.save_figure(ax, False, outDir, 'example' + str(n) + 'Project') else: pt.show(ax, False) [item.remove() for sublist in stuff for item in sublist] now = np.array([0, 0]) stuff = [] for i, proj in enumerate(projs + [B]): nnow = now + proj stuff.append( pt.scatter_and_annotate(ax, nnow, projColors[i], ('' if i < 3 else 'sum'))) stuff.append( pt.draw_arrow(ax, now, nnow, label=names[i] + '\'', color=projColors[i], alpha=0.3, head=0.1)) now = nnow n += 1 if outDir: pt.save_figure(ax, False, outDir, 'example' + str(n) + 'Sum') else: pt.show(ax, False) [item.remove() for sublist in stuff for item in sublist] squashed = nw.a # myActivation.activate(now,'tanh')[0] # print nw.a-squashed, 'should be (close to) zero' stuff = [] stuff.append(pt.scatter_and_annotate(ax, now, 'black', 'sum')) stuff.append(pt.scatter_and_annotate(ax, squashed, eC, str(nw))) stuff.append( pt.draw_arrow(ax, now, squashed, label='squash', color='blue', alpha=0.3, head=0.1)) n += 1 if outDir: pt.save_figure(ax, False, outDir, 'example' + str(n) + 'Squash') else: pt.show(ax, False) [item.remove() for sublist in stuff for item in sublist]
def plot_answers(theta): mtb = data.arithmetics.training_treebank( args['seed'], languages={'L9': 2000}, ) rnnTB = data.RNNTB(mtb.examples) fig, ax = pt.new_fig() colors = pt.colorscale(120, 'blue') ranges = [pt.colorscale(120, projColors[i]) for i in range(3)] mbits = np.split(theta[('composition', '#X#', '(#X#, #X#, #X#)', 'I', 'M')], 3, axis=1) tolabel = { '+': {i: [] for i in range(-60, 61, 10)}, '-': {i: [] for i in range(-60, 61, 10)} } # tolabel=tolabel+tolabel[:]+tolabel[:] doLater = [] for rnn, tar in rnnTB.get_examples(): rep = rnn.activate(theta) for i in [0, 2]: proj = mbits[i].dot(rep) doLater.append((rep, proj, projColors[i], ranges[i](tar + 60))) if tar in tolabel['-'].keys(): tolabel[rnn.root.inputs[1].key][tar].append(rep) # pt.scatter_and_annotate(ax, rep, color=colors(tar+60), label=tar, size=10, txtcolor='black') # del tolabel[tolabel.index(tar)] else: pt.scatter_and_annotate(ax, rep, color=colors(int(tar) + 60), label='', txtcolor='black') stuff = [] for op, d in tolabel.iteritems(): print op for tar, replist in d.iteritems(): if len(replist) == 0: continue av = np.average(np.array(replist), axis=0) stuff.append( pt.scatter_and_annotate(ax, av, color=colors(tar + 60), label=tar, txtcolor='black', pos=('right' if op == '+' else 'top'))) pt.title('Root representations of L9 expressions') if outDir: pt.save_figure(ax, True, outDir, 'answers') else: pt.show(ax, True) [item.remove() for sublist in stuff for item in sublist] for rep, proj, pColor, color in doLater[:200]: pt.draw_arrow(ax, rep, proj, label='', color=pColor, head=0, alpha=0.3) pt.scatter_and_annotate(ax, point=proj, label='', color=color) pt.title('Root representations and Projections of L9 expressions') if outDir: pt.save_figure(ax, True, outDir, 'answersProj') else: pt.show(ax, True)