data = np.vstack((Shh, Shh_fitted)) labels = ["Shh numerical", "Shh fitted"] linestyle = ["-", "-"] marker = ["", "d"] figtxt = ( "Derived Parameter: S = %1.3e, T = %1.3e [m2/s], tc = %1.3e [d]\nInput Parameter: L = %0.0f, x = %0.0f" % (Sy, T, tc, L, x)) print("Currently plotting: " + str(name_h) + " ...") # plot only spectrum of Shh plot_spectrum( [Shh], frequency_output, heading="Shh - Head Power Spectrum " + name_h, labels=["Shh obs"], path=save_path, linestyle=["-"], marker=[""], lims=[(2e-9, 7e-6), (1e-5, 1e7)], name="Shh_" + name_h, ) # plot only spectrum of Sww plot_spectrum( [Sww], frequency_input, heading="Sww - Recharge Power Spectrum " + name_r, labels=["Sww mHM"], path=save_path, linestyle=["-"], marker=[""],
# frequency_output, # heading="head spectrum " + name_h, # labels=["power_spec_out"], # path=save_path, # linestyle=["-"], # marker=[""], # lims=[(2e-9,7e-6),(1e-5,1e7)], # name="Shh_" + name_h # ) # plot only spectrum of Sww plot_spectrum([Sww], frequency_input, heading="recharge spectrum " + name_r, labels=["power_spec_out"], path=save_path, linestyle=["-"], marker=[""], lims=[(2e-9, 7e-6), (1e-10, 1e4)], name="Sww_" + name_r) # plot Shh and the fitted spectrum plot_spectrum( data, frequency_input, heading="Shh and fited spectrum", labels=["power_spec_out", "analytical fit"], path=save_path, linestyle=["-", " "], marker=["", "*"], figtxt=figtxt,
T_in_geo, T_in_har, T_in_ari, ) + "\nDerived Parameter: S = %1.3e, T = %1.3e" % ( popt[0], popt[1], ) plot_spectrum( data, frequency, labels=labels, path=path_to_results, # lims=lims, linestyle=linestyle, marker=marker, heading="Folder: " + project_folder + "\nLocation: " + str(obs_loc), name="PSD_" + project_folder + "_" + str(obs_loc).zfill(len(str(aquifer_length))), figtxt=figtxt, comment=comment, ) time_1_folder_end = time.time() - time_1_folder_begin print(str(time_1_folder_end) + " s elapsed for " + project_folder + "...") # set path to results incl file name of results path_to_results_df = path_to_results + "/" + comment + "results.csv" # if os.path.isfile(path_to_results_df): # override = true, not necesarry results.to_csv(path_to_results_df)
power_spectrum_1001_1100 = np.reshape(power_spectrum_1001_1100, (len(power_spectrum_1001_1100), )) figtxt = "OGS Input Parameter: Ss = %1.3e, D_geo = %1.3e, D_har = %1.3e, D_ari = %1.3e" % ( Ss1, kf_geomean / Ss1, kf_harmean / Ss1, kf_arimean / Ss1, ) + "\nDerived Parameter: D = %1.3e, D_cov = %1.1e" % ( D_1001_1100[0], D_cov[0], ) plot_spectrum(np.vstack( (power_spectrum_1001_1100, power_spectrum_1001_1100_anal)), frequency_1001_1100, name="white_noise_0.01", labels=["Sqq", "Sqq_fitted"], heading="Recharge: white noise, Stor = 0.01", marker=["", ""], linestyle=["-", "-"], path="/Users/houben/Desktop/baseflow_sa", figtxt=figtxt) # calculate the power spectrum for 1101_1200 D_1101_1100, D_cov, frequency_1101_1200, power_spectrum_1101_1200 = discharge_ftf_fit( recharge_1101_1200, baseflow_sum_1101_1200, 86400, 1000) power_spectrum_1101_1200_anal = discharge_ftf(frequency_1101_1200, D_1101_1100, aquifer_length) power_spectrum_1101_1200_anal = np.reshape( power_spectrum_1101_1200_anal, (len(power_spectrum_1101_1200_anal), )) power_spectrum_1101_1200 = np.reshape(power_spectrum_1101_1200, (len(power_spectrum_1101_1200), )) figtxt = "OGS Input Parameter: Ss = %1.3e, D_geo = %1.3e, D_har = %1.3e, D_ari = %1.3e" % (