data = np.vstack((Shh, Shh_fitted))

        labels = ["Shh numerical", "Shh fitted"]
        linestyle = ["-", "-"]
        marker = ["", "d"]
        figtxt = (
            "Derived Parameter:    S = %1.3e, T = %1.3e [m2/s], tc = %1.3e [d]\nInput Parameter:        L = %0.0f, x = %0.0f"
            % (Sy, T, tc, L, x))
        print("Currently plotting: " + str(name_h) + " ...")
        # plot only spectrum of Shh
        plot_spectrum(
            [Shh],
            frequency_output,
            heading="Shh - Head Power Spectrum " + name_h,
            labels=["Shh obs"],
            path=save_path,
            linestyle=["-"],
            marker=[""],
            lims=[(2e-9, 7e-6), (1e-5, 1e7)],
            name="Shh_" + name_h,
        )

        # plot only spectrum of Sww
        plot_spectrum(
            [Sww],
            frequency_input,
            heading="Sww - Recharge Power Spectrum  " + name_r,
            labels=["Sww mHM"],
            path=save_path,
            linestyle=["-"],
            marker=[""],
Exemple #2
0
    #        frequency_output,
    #        heading="head spectrum " + name_h,
    #        labels=["power_spec_out"],
    #        path=save_path,
    #        linestyle=["-"],
    #        marker=[""],
    #        lims=[(2e-9,7e-6),(1e-5,1e7)],
    #        name="Shh_" + name_h
    #    )

    # plot only spectrum of Sww
    plot_spectrum([Sww],
                  frequency_input,
                  heading="recharge spectrum " + name_r,
                  labels=["power_spec_out"],
                  path=save_path,
                  linestyle=["-"],
                  marker=[""],
                  lims=[(2e-9, 7e-6), (1e-10, 1e4)],
                  name="Sww_" + name_r)

    # plot Shh and the fitted spectrum
    plot_spectrum(
        data,
        frequency_input,
        heading="Shh and fited spectrum",
        labels=["power_spec_out", "analytical fit"],
        path=save_path,
        linestyle=["-", " "],
        marker=["", "*"],
        figtxt=figtxt,
Exemple #3
0
            T_in_geo,
            T_in_har,
            T_in_ari,
        ) + "\nDerived Parameter:    S = %1.3e, T = %1.3e" % (
            popt[0],
            popt[1],
        )

        plot_spectrum(
            data,
            frequency,
            labels=labels,
            path=path_to_results,
            #   lims=lims,
            linestyle=linestyle,
            marker=marker,
            heading="Folder: " + project_folder + "\nLocation: " + str(obs_loc),
            name="PSD_"
            + project_folder
            + "_"
            + str(obs_loc).zfill(len(str(aquifer_length))),
            figtxt=figtxt,
            comment=comment,
        )


    time_1_folder_end = time.time() - time_1_folder_begin
    print(str(time_1_folder_end) + " s elapsed for " + project_folder + "...")
    # set path to results incl file name of results
    path_to_results_df = path_to_results + "/" + comment + "results.csv"
    # if os.path.isfile(path_to_results_df): # override = true, not necesarry
    results.to_csv(path_to_results_df)
Exemple #4
0
power_spectrum_1001_1100 = np.reshape(power_spectrum_1001_1100,
                                      (len(power_spectrum_1001_1100), ))
figtxt = "OGS Input Parameter: Ss = %1.3e, D_geo = %1.3e, D_har = %1.3e, D_ari = %1.3e" % (
    Ss1,
    kf_geomean / Ss1,
    kf_harmean / Ss1,
    kf_arimean / Ss1,
) + "\nDerived Parameter:    D = %1.3e, D_cov = %1.1e" % (
    D_1001_1100[0],
    D_cov[0],
)
plot_spectrum(np.vstack(
    (power_spectrum_1001_1100, power_spectrum_1001_1100_anal)),
              frequency_1001_1100,
              name="white_noise_0.01",
              labels=["Sqq", "Sqq_fitted"],
              heading="Recharge: white noise, Stor = 0.01",
              marker=["", ""],
              linestyle=["-", "-"],
              path="/Users/houben/Desktop/baseflow_sa",
              figtxt=figtxt)

# calculate the power spectrum for 1101_1200
D_1101_1100, D_cov, frequency_1101_1200, power_spectrum_1101_1200 = discharge_ftf_fit(
    recharge_1101_1200, baseflow_sum_1101_1200, 86400, 1000)
power_spectrum_1101_1200_anal = discharge_ftf(frequency_1101_1200, D_1101_1100,
                                              aquifer_length)
power_spectrum_1101_1200_anal = np.reshape(
    power_spectrum_1101_1200_anal, (len(power_spectrum_1101_1200_anal), ))
power_spectrum_1101_1200 = np.reshape(power_spectrum_1101_1200,
                                      (len(power_spectrum_1101_1200), ))
figtxt = "OGS Input Parameter: Ss = %1.3e, D_geo = %1.3e, D_har = %1.3e, D_ari = %1.3e" % (