def writexipbias(samples,rhosfilenames,xim=False, plots=False,nameterms='terms_dxi.png',namedxip='dxi.png',namecovmat='covmat_pars.png',filename='dxip.fits'): from readjson import read_rhos from maxlikelihood import bestparameters from plot_stats import pretty_rho from readfits import read_corr from astropy.io import fits import numpy as np #plot covariance matrix of parameters alpha, beta and eta. if plots: par_matcov = np.cov(samples) corr=corrmatrix(par_matcov) print(par_matcov) print(corr) cov_vmin=np.min(corr) plt.imshow(corr,cmap='viridis'+'_r', interpolation='nearest', aspect='auto', origin='lower', vmin=cov_vmin, vmax=1.) plt.colorbar() plt.title(r'$\alpha \mid \beta \mid \eta $') plt.savefig(namecovmat, dpi=500) print(namecovmat, 'Printed!') a = b = n = 0; vara = varb = varn = 0; covab = covan = covbn = 0 bestpar = bestparameters(samples) par_matcov = np.cov(samples) if (par_matcov.size==1 ): variances = par_matcov else: variances = np.diagonal(par_matcov) covariances = sum( (par_matcov[i,i+1: ].tolist() for i in range(len(samples) - 1)) , [] ) if(len(samples)==3): a, b, n = bestpar vara, varb, varn = variances covab, covan, covbn = covariances elif(len(samples)==2): a, b = bestpar vara, varb = variances covab = covariances[0] elif(len(samples)==1): a = bestpar[0] vara = variances else: print("Warning, test type not defined") rhonames = args.rhos meanr, rho0, cov_rho0 = read_corr(rhonames[0]) meanr, rho1, cov_rho1 = read_corr(rhonames[1]) meanr, rho2, cov_rho2 = read_corr(rhonames[2]) meanr, rho3, cov_rho3 = read_corr(rhonames[3]) meanr, rho4, cov_rho4 = read_corr(rhonames[4]) meanr, rho5, cov_rho5 = read_corr(rhonames[5]) sig_rho0 = np.sqrt(np.diag(cov_rho0)) sig_rho1 = np.sqrt(np.diag(cov_rho1)) sig_rho2 = np.sqrt(np.diag(cov_rho2)) sig_rho3 = np.sqrt(np.diag(cov_rho3)) sig_rho4 = np.sqrt(np.diag(cov_rho4)) sig_rho5 = np.sqrt(np.diag(cov_rho5)) #Ploting each term of the bias if(plots): xlim = [2., 300.] #supposing that a,b and n are idependent of rhos(scale independent) var0 = ((2*a*rho0p)**2)*vara + (a**2)*(sig_rho0**2) var1 = ((2*b*rho1p)**2)*varb + (b**2)*(sig_rho1**2) var2 = ((2*n*rho3p)**2)*varn + (n**2)*(sig_rho3**2) varab = vara*(b**2) + varb*(a**2) + 2*covab*(a*b) #varab = ((a*b)**2)*( (vara/((a)**2)) + (varb/((b)**2)) + 2*covab/(a*b) ) var3 = 4*( (rho2p**2)*varab + (sig_rho2**2)*((a*b)**2) ) #var3 = 4*((a*b*rho2p)**2)*( varab/((a*b)**2) + (sig_rho2/rho2p)**2 ) varbn = varn*(b**2) + varb*(n**2) + 2*covbn*(b*n) #varbn = ((n*b)**2)*( (varn/((n)**2)) + (varb/((b)**2)) + 2*covbn/(b*n) ) var4 = 4*( (rho4p**2)*varbn + (sig_rho4**2)*((n*b)**2) ) #var4 = 4*((n*b*rho4p)**2)*(varbn/((b*n)**2) + (sig_rho4/rho4p)**2) varan = varn*(a**2) + vara*(n**2) + 2*covan*(a*n) #varan = ((n*a)**2)*( (varn/((n)**2)) + (vara/((a)**2)) + 2*covan/(a*n) ) var5 = 4*( (rho5p**2)*varan + (sig_rho5**2)*((n*a)**2) ) #var5 = 4*((n*a*rho5p)**2)*(varan/((a*n)**2) + (sig_rho5/rho5p)**2) plt.clf() lfontsize = 7 if (len(samples)==3): pretty_rho(meanr, (a**2)*rho0p, np.sqrt(np.diag(cov_rho0)), legend=r'$\alpha^{2} \rho_{0}$',lfontsize=lfontsize, color='red', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (b**2)*rho1p, np.sqrt(var1), legend=r'$\beta^{2}\rho_{1}$',lfontsize=lfontsize, color='green', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (n**2)*rho3p, np.sqrt(var2), legend=r'$\eta^{2}\rho_{3}$', lfontsize=lfontsize, color='black', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*a*b)*rho2p, np.sqrt(var3), legend=r'$2\alpha\beta \rho_{2}$',lfontsize=lfontsize, color='yellow', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*b*n)*rho4p, np.sqrt(var4), legend=r'$2\beta\eta\rho_{4}$',lfontsize=lfontsize, color='blue', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*n*a)*rho5p, np.sqrt(var5), legend=r'$2\eta\alpha\rho_{5}$', lfontsize=lfontsize, color='gray', ylabel='Correlations', xlim=xlim) print('Printing', nameterms) plt.savefig(nameterms, dpi=200) if (len(samples)==2): pretty_rho(meanr, (a**2)*rho0p, np.sqrt(var0), legend=r'$\alpha^{2} \rho_{0}$',lfontsize=lfontsize, color='red', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (b**2)*rho1p, np.sqrt(var1), legend=r'$\beta^{2}\rho_{1}$',lfontsize=lfontsize, color='green', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*a*b)*rho2p, np.sqrt(var3), legend=r'$2\alpha\beta \rho_{2}$',lfontsize=lfontsize, color='yellow', ylabel='Correlations', xlim=xlim) print('Printing', nameterms) plt.savefig(nameterms, dpi=200) if (len(samples)==1): pretty_rho(meanr, (a**2)*rho0p, np.sqrt(var0), legend=r'$\alpha^{2} \rho_{0}$',lfontsize=lfontsize, color='red', ylabel='Correlations', xlim=xlim) print('Printing', nameterms) plt.savefig(nameterms, dpi=200) #supposing that a,b and n are idependent of rhos(scale independent) dxip = (a**2)*rho0p + (b**2)*rho1p + (n**2)*rho3p + (2*a*b)*rho2p + (2*b*n)*rho4p + (2*n*a)*rho5p f1 = 2*(a*rho0p + b*rho2p + n*rho5p) f2 = 2*(b*rho1p + a*rho2p + n*rho4p) f3 = 2*(n*rho3p + b*rho4p + a*rho5p) f4 = a**2 ; f5 = b**2; f6 = 2*a*b f7 = n**2 ; f8 = 2*b*n; f9 = 2*n*a covmat_dxip = np.diag( (f1**2)*vara + (f2**2)*varb + (f3**2)*varn + + 2*(f1*f2*covab + f1*f3*covan + f2*f3*covbn) ) \ + (f4**2)*(cov_rho0) + (f5**2)*(cov_rho1) + (f6**2)*(cov_rho2) + (f7**2)*(cov_rho3) +(f8**2)*(cov_rho4) + (f9**2)*(cov_rho5) if(plots): plt.clf() pretty_rho(meanr, dxip, np.sqrt(np.diag(covmat_dxip)) , legend=r"$\delta \xi_{+}$", ylabel=r"$\delta \xi_{+}$", xlim=xlim) print('Printing', dxipname) plt.savefig(dxipname, dpi=150) nrows = len(dxip) hdu = fits.PrimaryHDU() hdul = fits.HDUList([hdu]) covmathdu = fits.ImageHDU(covmat_dxip, name='COVMAT') hdul.insert(1, covmathdu) angarray = meanr valuearray = np.array(dxip) bin1array = np.array([ -999]*nrows) bin2array = np.array([ -999]*nrows) angbinarray = np.arange(nrows) array_list = [bin1array, bin2array, angbinarray, valuearray, angarray ] for array, name in zip(array_list, names): outdata[name] = array corrhdu = fits.BinTableHDU(outdata, name=nam) hdul.insert(2, corrhdu) if xim: hdul.writeto(filename + 'm.fits', clobber=True) else: hdul.writeto(filename + 'p.fits', clobber=True)
def main(): import sys sys.path.insert(0, '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/src') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.style.use('SVA1StyleSheet.mplstyle') from readjson import read_rhos, read_taus from plot_stats import pretty_rho import numpy as np outpath = os.path.expanduser( '/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/plots') try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise #Comparing mod and unmod tau correlations modtaus = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/tau_all_galaxy-reserved_irz.json" unmodtaus = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/tau_all_galaxy-reserved_unmod_irz.json" meanr, tau0p, tau2p, tau5p, sig_tau0, sig_tau2, sig_tau5 = read_taus( modtaus) meanr_m, tau0p_m, tau2p_m, tau5p_m, sig_tau0_m, sig_tau2_m, sig_tau5_m = read_taus( unmodtaus) sqrtn = 1 plt.clf() pretty_rho(meanr, tau0p, sig_tau0, sqrtn, legend=r'$\tau_{0}$', color='blue', ylim=False, lfontsize=10) pretty_rho(meanr_m, tau0p_m, sig_tau0_m, sqrtn, legend=r'$\tau_0*$', color='blue', marker='P', ylim=False, lfontsize=10) pretty_rho(meanr, tau2p, sig_tau2, sqrtn, legend=r'$\tau_{2}$', color='green', ylim=False, lfontsize=10) pretty_rho(meanr_m, tau2p_m, sig_tau2_m, sqrtn, legend=r'$\tau_2*$', color='green', marker='P', ylim=False, lfontsize=10) pretty_rho(meanr, tau5p, sig_tau5, sqrtn, legend=r'$\tau_{5}$', color='red', ylim=False, lfontsize=10) pretty_rho(meanr_m, tau5p_m, sig_tau5_m, sqrtn, legend=r'$\tau_5*$', color='red', marker='P', ylim=False, lfontsize=10, ylabel=r'$\tau(\theta)$') plt.xlim([0, 1000]) print("Printing :", outpath + '/taustatsmeanvsnomean1.pdf') plt.savefig(outpath + '/taustatsmeanvsnomean1.pdf') #Comparing mod and unmod rhos correlations modrhoseobs = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/rho_all_reserved_mod_eobs_magcut_irz.json" modrhosepiff = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/rho_all_reserved_unmod_eobs_magcut_irz.json" meanr_obs, rho0p_obs, rho1p_obs, rho2p_obs, rho3p_obs, rho4p_obs, rho5p_obs, sig_rho0_obs, sig_rho1_obs, sig_rho2_obs, sig_rho3_obs, sig_rho4_obs, sig_rho5_obs = read_rhos( modrhoseobs) meanr, rho0p, rho1p, rho2p, rho3p, rho4p, rho5p, sig_rho0, sig_rho1, sig_rho2, sig_rho3, sig_rho4, sig_rho5 = read_rhos( modrhosepiff) sqrtn = 1 plt.clf() pretty_rho(meanr, rho1p_obs, sig_rho1_obs, sqrtn, legend=r'$\rho_{1}$', color='blue', ylim=False, lfontsize=10) pretty_rho(meanr, rho1p, sig_rho1, sqrtn, legend=r'$\rho_1*$', color='blue', marker='P', ylim=False, lfontsize=10) pretty_rho(meanr, rho3p_obs, sig_rho3_obs, sqrtn, legend=r'$\rho_{3}$', color='green', ylim=False, lfontsize=10) pretty_rho(meanr, rho3p, sig_rho3, sqrtn, legend=r'$\rho_3*$', color='green', marker='P', ylim=False, lfontsize=10) pretty_rho(meanr, rho4p_obs, sig_rho4_obs, sqrtn, legend=r'$\rho_{4}$', color='red', ylim=False, lfontsize=10) pretty_rho(meanr, rho4p, sig_rho4, sqrtn, legend=r'$\rho_4*$', color='red', marker='P', ylim=False, lfontsize=10) plt.xlim([0, 400]) print("Printing :", outpath + '/statsmeanvsnomean1.pdf') plt.savefig(outpath + '/statsmeanvsnomean1.pdf') plt.clf() pretty_rho(meanr, rho2p_obs, sig_rho2_obs, sqrtn, legend=r'$\rho_{2}$', color='blue', ylim=False, lfontsize=10) pretty_rho(meanr, rho2p, sig_rho2, sqrtn, legend=r'$\rho_2*$', color='blue', marker='P', ylim=False, lfontsize=10) pretty_rho(meanr, rho5p_obs, sig_rho5_obs, sqrtn, legend=r'$\rho_{5}$', color='green', ylim=False, lfontsize=10) pretty_rho(meanr, rho5p, sig_rho5, sqrtn, legend=r'$\rho_5*$', color='green', marker='P', ylim=False, lfontsize=10) plt.xlim([0, 400]) print("Printing :", outpath + '/statsmeanvsnomean2.pdf') plt.savefig(outpath + '/statsmeanvsnomean2.pdf') plt.clf() pretty_rho(meanr, rho0p_obs, sig_rho0_obs, sqrtn, legend=r'$\rho_{0}$', color='blue', ylim=False, lfontsize=10) pretty_rho(meanr, rho0p, sig_rho0, sqrtn, legend=r'$\rho_0*$', color='blue', marker='P', ylim=False, lfontsize=10) plt.xlim([0, 400]) print("Printing :", outpath + '/statsmeanvsnomean0.pdf') plt.savefig(outpath + '/statsmeanvsnomean0.pdf') #Reading a ploting reserved stars correlations modrhoseobs = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/rho_all_reserved_mod_eobs_magcut_irz.json" modrhosepiff = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/rho_all_reserved_mod_epiff_magcut_irz.json" meanr_obs, rho0p_obs, rho1p_obs, rho2p_obs, rho3p_obs, rho4p_obs, rho5p_obs, sig_rho0_obs, sig_rho1_obs, sig_rho2_obs, sig_rho3_obs, sig_rho4_obs, sig_rho5_obs = read_rhos( modrhoseobs) meanr, rho0p, rho1p, rho2p, rho3p, rho4p, rho5p, sig_rho0, sig_rho1, sig_rho2, sig_rho3, sig_rho4, sig_rho5 = read_rhos( modrhosepiff) sqrtn = 1 plt.clf() pretty_rho(meanr, rho1p_obs, sig_rho1_obs, sqrtn, legend=r'$\rho_{1}(e_{obs})$', color='blue') pretty_rho(meanr, rho1p, sig_rho1, sqrtn, legend=r'$\rho_1(e_{piff})$', color='green', marker='P') print("Printing :", outpath + '/deltarho1_modeobs.pdf') plt.savefig(outpath + '/deltarho1_modeobs.pdf') plt.clf() pretty_rho(meanr, rho2p + rho1p, np.sqrt(sig_rho1**2 + sig_rho2**2), sqrtn, legend=r'$\rho_2(e_{piff})+\rho_1(e_{piff})$', color='blue') pretty_rho(meanr, rho2p_obs, sig_rho2_obs, sqrtn, legend=r'$\rho_2(e_{obs})$', color='green', marker='P') print("Printing :", outpath + '/r2+r1modepiff.pdf') plt.savefig(outpath + '/r2+r1modepiff.pdf')
def main(): import sys args = parse_args() sys.path.insert(0, args.srcpath) import numpy as np from readjson import read_xi, read_dxip from plot_stats import pretty_rho #Make directory where the ouput data will be outpath = os.path.expanduser(args.outpath) try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise meanr_xip, xip_obs, sig_xip = read_xi(args.xipobs) meanr_dxip, dxip, sig_dxip = read_dxip(args.dxip) plt.clf() pretty_rho(meanr_xip, xip_obs, sig_xip, legend=r"$\xi_{+}^{obs}$",lfontsize=10, color='blue', ylabel='Correlations', ylim=False) pretty_rho(meanr_dxip, dxip, sig_dxip, legend=r"$\delta \xi_{+}$",lfontsize=10, color='red', ylabel='Correlations', ylim=False) fname = 'plots/xiobs_vs_xibias_abe2.png' print('Printing:', outpath +fname) plt.savefig(outpath +fname) meanr_dxip, dxip, sig_dxip = read_dxip('/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/dxip-alpha-beta.json') plt.clf() pretty_rho(meanr_xip, xip_obs, sig_xip, legend=r"$\xi_{+}^{obs}$",lfontsize=10, color='blue', ylabel='Correlations', ylim=False) pretty_rho(meanr_dxip, dxip, sig_dxip, legend=r"$\delta \xi_{+}$",lfontsize=10, color='red', ylabel='Correlations', ylim=False) fname = 'plots/xiobs_vs_xibias_ab2.png' print('Printing:', outpath +fname) plt.savefig(outpath +fname) meanr_dxip, dxip, sig_dxip = read_dxip('/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/dxip-alpha.json') plt.clf() pretty_rho(meanr_xip, xip_obs, sig_xip, legend=r"$\xi_{+}^{obs}$",lfontsize=10, color='blue', ylabel='Correlations', ylim=False) pretty_rho(meanr_dxip, dxip, sig_dxip, legend=r"$\delta \xi_{+}$",lfontsize=10, color='red', ylabel='Correlations', ylim=False) fname = 'plots/xiobs_vs_xibias_a2.png' print('Printing:', outpath +fname) plt.savefig(outpath +fname)
def main(): import sys sys.path.insert(0, '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/src') import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.style.use('SVA1StyleSheet.mplstyle') from readjson import read_rhos, read_taus from plot_stats import pretty_rho import numpy as np outpath = os.path.expanduser( '/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/plots') try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise tausp1 = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/tau_all_galaxy-reserved_mod_patch1_irz.json" tausp2 = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/tau_all_galaxy-reserved_mod_patch2_irz.json" tausp3 = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/tau_all_galaxy-reserved_mod_patch3_irz.json" tausp4 = "/home2/dfa/sobreira/alsina/catalogs/output/alpha-beta-gamma/tau_all_galaxy-reserved_mod_patch4_irz.json" meanr1, tau0p1, tau2p1, tau5p1, sig_tau01, sig_tau21, sig_tau51 = read_taus( tausp1) meanr2, tau0p2, tau2p2, tau5p2, sig_tau02, sig_tau22, sig_tau52 = read_taus( tausp2) meanr3, tau0p3, tau2p3, tau5p3, sig_tau03, sig_tau23, sig_tau53 = read_taus( tausp3) meanr4, tau0p4, tau2p4, tau5p4, sig_tau04, sig_tau24, sig_tau54 = read_taus( tausp4) sqrtn = 1 plt.clf() pretty_rho(meanr1, tau0p1, sig_tau01, sqrtn, legend='P++', lfontsize=10, color='blue', ylabel=r'$\tau_{0}$', ylim=False) pretty_rho(meanr2, tau0p2, sig_tau02, sqrtn, legend='P-+', lfontsize=10, color='red', ylabel=r'$\tau_{0}$', ylim=False) pretty_rho(meanr3, tau0p3, sig_tau03, sqrtn, legend='P--', lfontsize=10, color='green', ylabel=r'$\tau_{0}$', ylim=False) pretty_rho(meanr4, tau0p4, sig_tau04, sqrtn, legend='P+-', lfontsize=10, color='black', ylabel=r'$\tau_{0}$', ylim=False) print("Printing :", outpath + '/taus0_quadrants.png') plt.savefig(outpath + '/taus0_quadrants.png') plt.clf() pretty_rho(meanr1, tau2p1, sig_tau21, sqrtn, legend='P++', lfontsize=10, color='blue', ylabel=r'$\tau_{2}$', ylim=False) pretty_rho(meanr2, tau2p2, sig_tau22, sqrtn, legend='P-+', lfontsize=10, color='red', ylabel=r'$\tau_{2}$', ylim=False) pretty_rho(meanr3, tau2p3, sig_tau23, sqrtn, legend='P--', lfontsize=10, color='green', ylabel=r'$\tau_{2}$', ylim=False) pretty_rho(meanr4, tau2p4, sig_tau24, sqrtn, legend='P+-', lfontsize=10, color='black', ylabel=r'$\tau_{2}$', ylim=False) print("Printing :", outpath + '/taus2_quadrants.png') plt.savefig(outpath + '/taus2_quadrants.png') plt.clf() pretty_rho(meanr1, tau5p1, sig_tau51, sqrtn, legend='P++', lfontsize=10, color='blue', ylabel=r'$\tau_{5}$', ylim=False) pretty_rho(meanr2, tau5p2, sig_tau52, sqrtn, legend='P-+', lfontsize=10, color='red', ylabel=r'$\tau_{5}$', ylim=False) pretty_rho(meanr3, tau5p3, sig_tau53, sqrtn, legend='P--', lfontsize=10, color='green', ylabel=r'$\tau_{5}$', ylim=False) pretty_rho(meanr4, tau5p4, sig_tau54, sqrtn, legend='P+-', lfontsize=10, color='black', ylabel=r'$\tau_{5}$', ylim=False) print("Printing :", outpath + '/taus5_quadrants.png') plt.savefig(outpath + '/taus5_quadrants.png')
def plot_correlations(outpath): from plot_stats import pretty_rho import numpy as np ylims = [[ - 0.1, 0.1],[ - 30, 30],[ -600, 600] ] outputnames = ['rho0.png', 'rho1.png', 'rho2.png', 'rho3.png', 'rho4.png', 'rho5.png'] colors = ['black', 'green', 'blue', 'red', 'gray', 'pink'] min_sep_list = [0.05, 0.1, 0.2, 0.3, 0.4] #min_sep_list = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for min_sep in enumeratemin_sep_list: meanr, rho0p, rho1p, rho2p, rho3p, rho4p, rho5p, sig_rho0, sig_rho1, sig_rho2, sig_rho3, sig_rho4, sig_rho5 =read_rhos(os.path.join(outpath, "rho_%f.json"%(min_sep))) plt.clf() plt.figure(0) pretty_rho(meanr, rho0p, sig_rho0, legend=str(min_sep), lfontsize=24, color='black', marker='o', ylabel=r'$\rho_{0}(\theta)$',title=r'$\rho_{0}(\theta)$', xlim=None, ylim=None) plt.clf() plt.figure(1) pretty_rho(meanr, rho1p, sig_rho1, legend=str(min_sep), lfontsize=24, color='black', marker='o', ylabel=r'$\rho_{1}(\theta)$',title=r'$\rho_{1}(\theta)$', xlim=None, ylim=None) plt.clf() plt.figure(2) pretty_rho(meanr, rho2p, sig_rho2, legend=str(min_sep), lfontsize=24, color='black', marker='o', ylabel=r'$\rho_{2}(\theta)$',title=r'$\rho_{2}(\theta)$', xlim=None, ylim=None) plt.clf() plt.figure(3) pretty_rho(meanr, rho3p, sig_rho3, legend=str(min_sep), lfontsize=24, color='black', marker='o', ylabel=r'$\rho_{3}(\theta)$',title=r'$\rho_{3}(\theta)$', xlim=None, ylim=None) plt.clf() plt.figure(4) pretty_rho(meanr, rho4p, sig_rho4, legend=str(min_sep), lfontsize=24, color='black', marker='o', ylabel=r'$\rho_{4}(\theta)$',title=r'$\rho_{4}(\theta)$', xlim=None, ylim=None) plt.clf() plt.figure(5) pretty_rho(meanr, rho5p, sig_rho5, legend=str(min_sep), lfontsize=24, color='black', marker='o', ylabel=r'$\rho_{5}(\theta)$',title=r'$\rho_{5}(\theta)$', xlim=None, ylim=None) for i in range(6): plt.figure(i) plt.tight_layout() print("Printing :", outpath + outputnames[t]) plt.savefig(outpath +outputnames[i], dpi=200)
def main(): import sys args = parse_args() sys.path.insert(0, args.srcpath) import numpy as np from readjson import read_taus from plot_stats import pretty_rho, plot_tomograpically_bin #Make directory where the ouput data will be outpath = os.path.expanduser(args.outpath) try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise section_name = 'galaxy_cl_nbb' xlabel = r'$\theta$ [arcmin]' ylabel = r'$\tau$' nbins = 4 fig, ax = plt.subplots(nbins, nbins, figsize=(1.6 * nbins, 1.6 * nbins), sharey=True, sharex=True) bins = [[1, 1], [2, 2], [3, 3], [4, 4]] lines = [] cols = ['red', 'blue', 'green', 'gray'] for i, j in bins: fileaux = findbinfile(args.tausbins, i, j) meanr, tau0p, tau2p, tau5p, sig_tau0p, sig_tau2p, sig_tau5p = read_taus( args.tausbins + fileaux) plot_tomograpically_bin(ax, i, j, meanr, tau0p, yerr=sig_tau0p, xlabel=xlabel, ylabel=ylabel, nbins=4, color='blue') #, label=r'$\tau_{0}$') plot_tomograpically_bin(ax, i, j, meanr, tau2p, yerr=sig_tau2p, xlabel=xlabel, ylabel=ylabel, nbins=4, color='red') #, label=r'$\tau_{2}$') plot_tomograpically_bin(ax, i, j, meanr, tau5p, yerr=sig_tau5p, xlabel=xlabel, ylabel=ylabel, nbins=4, color='green') #, label=r'$\tau_{05}$') lines.append(ax[1][1].lines) fig.legend(lines, labels=[r'$\tau_{0}$', r'$\tau_{2}$', r'$\tau_{5}$'], bbox_to_anchor=(1.1, 1.08)) plt.tight_layout() fname = 'all_taus_tomo.png' print('Printing:', outpath + fname) plt.savefig(outpath + fname, dpi=300) plt.close(fig) #tau0 plt.clf() for i, j in bins: fileaux = findbinfile(args.tausbins, i, j) meanr, tau0p, tau2p, tau5p, sig_tau0p, sig_tau2p, sig_tau5p = read_taus( args.tausbins + fileaux) pretty_rho(meanr, tau0p, sig_tau0p, legend="{},{}".format(i, j), lfontsize=15, color=cols[i - 1], ylabel=r'$\tau_{0}(\theta)$', ylim=False) fname = 'taus0_tomo.png' print('Printing:', outpath + fname) plt.savefig(outpath + fname, dpi=300) #tau2 plt.clf() for i, j in bins: fileaux = findbinfile(args.tausbins, i, j) meanr, tau0p, tau2p, tau5p, sig_tau0p, sig_tau2p, sig_tau5p = read_taus( args.tausbins + fileaux) pretty_rho(meanr, tau2p, sig_tau2p, legend="{},{}".format(i, j), lfontsize=15, color=cols[i - 1], ylabel=r'$\tau_{2}(\theta)$', ylim=False) fname = 'taus2_tomo.png' print('Printing:', outpath + fname) plt.savefig(outpath + fname, dpi=300) #tau5 plt.clf() for i, j in bins: fileaux = findbinfile(args.tausbins, i, j) meanr, tau0p, tau2p, tau5p, sig_tau0p, sig_tau2p, sig_tau5p = read_taus( args.tausbins + fileaux) pretty_rho(meanr, tau5p, sig_tau5p, legend="{},{}".format(i, j), lfontsize=15, color=cols[i - 1], ylabel=r'$\tau_{5}(\theta)$', ylim=False) fname = 'taus5_tomo.png' print('Printing:', outpath + fname) plt.savefig(outpath + fname, dpi=300)