Exemple #1
0
def experiment(env, step_type, training_rounds, gamma, lr, train_ep, oneshot, test_ep, save_folder, device, config):
    """
    Run an experiment where agents are trained and tested (including cross-play)

    training_rounds is the number of pairs of policies trained
    """
    step_func = step_funcs[step_type]

    print("---- Starting ----")
    ### Train policies
    p1s, p2s = train_policies(env, training_rounds, step_func, train_ep, gamma, lr, device) 

    qs = QuickSaver(subfolder=save_folder)
    qs.save_json(config, name='config')

    ### Save policies
    list_p1s = list(map(lambda p: p.tolist(), p1s))
    list_p2s = list(map(lambda p: p.tolist(), p2s))
    save_results(qs, 'Pols', list_p1s, list_p2s)

    for name, prior in env.generate_test_priors():
        print("Testing prior", name, "...")
        ### Test policies
        r1s, r2s = several_test(env, prior, p1s, p2s)
        xr1s, xr2s = several_cross_test(env, prior, p1s, p2s, n_crosses=training_rounds)
    
        ### Plot results
        plot_results(env, prior, r1s, r2s, color='orange')
        plot_results(env, prior, xr1s, xr2s, color='blue')
        save_plot(qs, name + '_results')

        ### Save results
        save_results(qs, name + '_Pfs', r1s, r2s)
        save_results(qs, name + '_XPfs', xr1s, xr2s)
Exemple #2
0
    def validation(self):
        ntest = self.fit_nrows - self.ntrain
        steps_test = int(ntest / configs['data']['batch_size'])
        tesize = steps_test * configs['data']['batch_size']

        data_gen_test = self.dl.generate_clean_data(
            configs['data']['filename_clean'],
            size=tesize,
            batch_size=configs['data']['batch_size'],
            start_index=self.ntrain)

        print('> Testing model on', ntest, 'data rows with', steps_test,
              'steps')

        predictions = self.model.predict_generator(
            self.generator_strip_xy(data_gen_test), steps=steps_test)
        # Save our predictions
        with h5py.File(configs['model']['filename_predictions'], 'w') as hf:
            dset_p = hf.create_dataset('predictions', data=predictions)
            dset_y = hf.create_dataset('true_values', data=self.ture_values)

        plot.plot_results(predictions[:800], self.ture_values[:800])
Exemple #3
0
    #     start_time_1 = time()
    #     while model_f.t >= model_f.t_final and model_f.condition:
    #         '''
    #         Generates the field, which can start at a different redshift from the cluster
    #         '''
    #         start_time_2 = time()
    #         model_f.evolve_field()
            
    #         model_f.update_ssfr_params()
            
            
    #         model_f.update_step() # advances t, z to next step
            
    #         #print('\t time per step: {:.2f}s'.format(time() - start_time_2))
    #         #print('~~~~~~~~~~~~~~~~~~~~~~~')
    #     print('Total ellapsed time for Field: {:.2f}s'.format(time() - start_time_1))
    
    # model_f.parse_masked_mass_field()
    # model_c.parse_masked_mass_cluster()
    
    plot_results(params, model_c, model_f)
    
    # total_stel_mass             = np.sum(np.power(10,model_c.final_mass_cluster_SF)) + np.sum(np.power(10, model_c.final_mass_cluster_Q))
    # total_stel_mass_per_cluster = total_stel_mass/n_clusters
    
    # print('Total stellar mass of cluster: ', np.log10(total_stel_mass_per_cluster))
    
    # p.close()
    # p.join()
    
Exemple #4
0
    image_path = f"{args.input_path}/frames/"
    detections_path = f"{args.input_path}/{'annotations.mat' if args.annotations else 'observations.mat'}"

    mat = scipy.io.loadmat(detections_path)
    detections = mat['annotations'] if args.annotations else mat['observations']

    file_paths = sorted(glob(f"{image_path}/*.png"))

    tracker = Tracker(args.gating_area, args.use_hungarian, args.use_kalman, args.use_mahalanobis)

    for i, file_path in enumerate(file_paths):
        img = cv2.imread(file_path)
        img_tracks = img.copy()

        if i > 0:
            # previous measurement in red; indexing starts with 1
            utils.plot_detections(img, detections[detections[:, 0] == i, 1:], (0, 0, 255))

        # current measurement in blue
        utils.plot_detections(img, detections[detections[:, 0] == i + 1, 1:], (255, 255, 0))

        tracks, debug_info = tracker.update([{'pos': pos} for pos in detections[detections[:, 0] == i+1, 1:]])

        if args.use_kalman:
            # plot white predicted states
            utils.plot_detections(img, np.array(debug_info['predicted_positions']), (255, 255, 255))

        utils.plot_tracks(img_tracks, tracks, num_colors=15)
        utils.plot_results(img, img_tracks)