yi = np.loadtxt(yi_path, delimiter=',') lami_path = f'{path}/img/txt/lam{i}_best.txt' lami = np.loadtxt(lami_path, dtype=int) wi_path = f'{path}/img/txt/W{i}_best.txt' wi = np.loadtxt(wi_path) zi_path = f'{path}/img/txt/Z{i}_best.txt' zi = np.loadtxt(zi_path) # Plot plt.figure(figsize=(6, 6)) plot_yz.plot_y_centroids(yi, lami, wi, vlim=(-3, 3), cm=blue2red.cm(6), population=population, Zi=zi, fs_xlabel=16, fs_ylabel=16, fs_xticks=16, fs_yticks=16) outpath = f'{path}/img/y{i}_centroid.pdf' plt.savefig(outpath, bbox_inches="tight") plt.close() # Plot Z estimate. plt.figure(figsize=(6, 6)) plot_yz.plot_Z(Z_mean=zi, wi_mean=wi, lami_est=lami, w_thresh=0.0,
for i in (1, 2): # Read data yi_path = f'{path}/img/txt/y{i}_mean.csv' yi = np.loadtxt(yi_path, delimiter=',') lami_path = f'{path}/img/txt/lam{i}_best.txt' lami = np.loadtxt(lami_path, dtype=int) wi_path = f'{path}/img/txt/W{i}_best.txt' wi = np.loadtxt(wi_path) zi_path = f'{path}/img/txt/Z{i}_best.txt' Zi = np.loadtxt(zi_path) # Plot y centroids plt.figure(figsize=(6, 6)) plot_yz.plot_y_centroids(yi, lami, wi, vlim=(-3, 3), cm=blue2red.cm(6), population=population, Zi=Zi, fs_xlabel=16, fs_ylabel=16, fs_xticks=14, fs_yticks=16, rotation=45, markernames=markernames, ha="right") outpath = f'{path}/img/y{i}_centroid.pdf' plt.savefig(outpath, bbox_inches="tight") plt.close()