Exemple #1
0
def make_annotations(pos, text, font_size=10, font_color='rgb(250,250,250)'):
    L = len(pos)
    if len(text) != L:
        raise ValueError('The lists pos and text must have the same len')
    annotations = go.Annotations()
    for k in range(L):
        annotations.append(
            go.Annotation(
                text=G.vs['label']
                [k],  # or replace labels with a different list for the text within the circle
                x=pos[k][0],
                y=2 * M - position[k][1],
                xref='x1',
                yref='y1',
                font=dict(color=font_color, size=font_size),
                showarrow=False))

    # now make line annotations
    for edge in G.es:
        edge_text = edge['label']
        node0, node1 = edge.tuple

        x0 = Xn[node0]
        x1 = Xn[node1]
        y0 = Yn[node0]
        y1 = Yn[node1]
        x_pos = (x0 - (x0 - x1) / 2.0)
        y_pos = (y0 - (y0 - y1) / 2.0)

        annotations.append(
            go.Annotation(text=edge_text, x=x_pos, y=y_pos, showarrow=False))

    return annotations
Exemple #2
0
	def check_ann(annotation):
		local_list=[]
		try:
			_annotation=dict_replace_keyword({},'font',annotation,False)
			_annotation=dict_replace_keyword(_annotation,'font',kwargs,False)
			local_list.append(go.Annotation(_annotation))
			
		except:
			if 'title' in annotation:
				local_list.append(
						go.Annotation(	
								text=annotation['title'],
								showarrow=False,
								x=0,
								y=1,
								xref='paper',
								yref='paper',
								font={'size':24 if not 'fontsize' in kwargs else kwargs['fontsize']}
							)
					)
				del annotation['title']
		
			for k,v in list(annotation.items()):
				if kind in ('candlestick','ohlc','candle'):
					d=ta._ohlc_dict(df)
					maxv=df[d['high']].ix[k]
					yref='y2'
				else:
					maxv=df.ix[k].sum() if k in df.index else 0
					yref='y1'
				ann=go.Annotation(
								x=k,
								y=maxv,
								xref='x',
								yref=yref,
								text=v,
								showarrow=True,
								arrowhead=7,
								ax=0,
								ay=-100,
								textangle=-90
								)
				local_list.append(ann)

			_l=[]
			for i in local_list:
				_l.append(dict_replace_keyword(i,'font',kwargs,True))
			
			local_list=_l

		return local_list
Exemple #3
0
    def make_annotations(self,
                         labels=[],
                         font_size=10,
                         font_color='rgb(250,250,250)'):
        """Interactive tree graph.

        Args:
            labels: New labels.
            font_size: Size of the font.
            font_color: Color of the font.

        Returns:
            annotations: Graph annotation.
        """

        if not labels:
            labels = self.labels
        elif len(labels) != self.num_nodes:
            raise ValueError(
                'The lists positions and labels must have the same len')

        annotations = go.Annotations()
        for k in range(self.num_nodes):
            annotations.append(
                go.Annotation(text=labels[k],
                              x=self.positions[k][0],
                              y=2 * self.tree_height - self.positions[k][1],
                              xref='x1',
                              yref='y1',
                              font=dict(color=font_color, size=font_size),
                              showarrow=False))
        return annotations
def interploation_1d(life_ladder_data, no_of_years, no_of_days, power):
    num = range(0, no_of_years)
    x = np.array(tuple(num))
    y = np.array(life_ladder_data)
    z = np.polyfit(x, y, power)
    f = np.poly1d(z)
    num_1 = no_of_years - 1
    x_new = np.linspace(0, num_1, no_of_days)
    y_new = f(x_new)
    print("The interpolated y-values are:\n", y_new)
    print("Total:", len(y_new), "datapoints generated for this specific diagram.")
    trace1 = go.Scatter(
        x=x,
        y=y,
        mode='markers',
        name='Data',
        marker=dict(
            size=12))
    trace2 = go.Scatter(
        x=x_new,
        y=y_new,
        mode='lines',
        name='Fit')
    annotation = go.Annotation(
        x=1,
        y=1,
        showarrow=False)
    layout = go.Layout(title='Polynomial Fit in Python',
                       annotations=[annotation])
    data = [trace1, trace2]
    fig = go.Figure(data=data, layout=layout)
    iplot(fig)
    return y_new
Exemple #5
0
def predattweek(tid=None):
    mydb = mysql.connector.connect(host="localhost",
                                   user="******",
                                   passwd="battlefield4",
                                   database="footballmanagement")
    mycursor = mydb.cursor()

    if tid == None:
        mycursor.execute(
            "select matches.mid, matches.Attendance from matches,teams where matches.season='2017/18' and matches.HT=teams.TID ;"
        )
    else:
        mycursor.execute(
            "select matches.mid, matches.Attendance from matches,teams where matches.season='2017/18' and matches.HT=teams.TID and teams.tid="
            + str(tid) + ";")

    myresult = mycursor.fetchall()
    # print(myresult)
    x1 = list()
    ctr = 0
    for x in myresult:
        x1.append((ctr, x[1]))
        ctr = ctr + 1

    # print(x1)
    x = x1

    points = np.array(x)

    x = points[:, 0]
    y = points[:, 1]

    z = np.polyfit(x, y, 3)
    f = np.poly1d(z)

    x_new = np.linspace(0, 20, 50)
    y_new = f(x_new)

    trace1 = go.Scatter(x=x,
                        y=y,
                        mode='markers',
                        name='Data',
                        marker=dict(size=12))

    trace2 = go.Scatter(x=x_new, y=y_new, mode='lines', name='Fit')

    annotation = go.Annotation(x=6,
                               y=-4.5,
                               text='Expected attendance at the Bridge',
                               showarrow=False)

    layout = go.Layout(title='Polynomial Fit', annotations=[annotation])

    data = [trace1, trace2]
    fig = go.Figure(data=data, layout=layout)

    # py.iplot(fig, filename='interpolation-and-extrapolation')
    graphJSON = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
    return graphJSON
Exemple #6
0
def errorfig(
    txt='There was an error! We\'ve logged it and will try to fix it. Try something else!'
):
    data = [go.Heatmap(z=[0], x=[0], y=[['']], showscale=False)]
    layout = go.Layout(annotations=go.Annotations(
        [go.Annotation(x=0, y=2, showarrow=False, text=txt)]))
    fig = go.Figure(data=data, layout=layout)
    return fig
Exemple #7
0
    def draw_title(self, **props):
        """Add a title to the current subplot in layout dictionary.

        If there exists more than a single plot in the figure, titles revert
        to 'page'-referenced annotations.

        props.keys() -- [
        'text',         (actual content string, not the text obj)
        'position',     (an x, y pair, not an mpl Bbox)
        'coordinates',  ('data', 'axes', 'figure', 'display')
        'text_type',    ('title', 'xlabel', or 'ylabel')
        'style',        (style dict, see below)
        'mplobj'        (actual mpl text object)
        ]

        props['style'].keys() -- [
        'alpha',        (opacity of text)
        'fontsize',     (size in points of text)
        'color',        (hex color)
        'halign',       (horizontal alignment, 'left', 'center', or 'right')
        'valign',       (vertical alignment, 'baseline', 'center', or 'top')
        'rotation',
        'zorder',       (precedence of text when stacked with other objs)
        ]

        """
        self.msg += "        Attempting to draw a title\n"
        if len(self.mpl_fig.axes) > 1:
            self.msg += "          More than one subplot, adding title as " \
                        "annotation\n"
            x_px, y_px = props['mplobj'].get_transform().transform(props[
                'position'])
            x, y = mpltools.display_to_paper(x_px, y_px,
                                             self.plotly_fig['layout'])
            annotation = go.Annotation(
                text=props['text'],
                font=go.layout.annotation.Font(
                    color=props['style']['color'],
                    size=props['style']['fontsize']
                ),
                xref='paper',
                yref='paper',
                x=x,
                y=y,
                xanchor='center',
                yanchor='bottom',
                showarrow=False  # no arrow for a title!
            )
            self.plotly_fig['layout']['annotations'] += annotation,
        else:
            self.msg += "          Only one subplot found, adding as a " \
                        "plotly title\n"
            self.plotly_fig['layout']['title'] = props['text']
            titlefont = dict(
                size=props['style']['fontsize'],
                color=props['style']['color']
            )
            self.plotly_fig['layout']['titlefont'] = titlefont
Exemple #8
0
def generate_individual_bar(x, y, annotations, tpe, mn, mx):
    dt_format = '%Y-%m-%d %H:%M:%S'
    if len(x) == 0:
        div = no_data(f"{tpe}-meal blood sugar bar chart")
    else:
        trace = go.Bar(x=x, y=y, text=annotations, marker=dict(color=determine_bar_colors(y, tpe)))
        layout = go.Layout(title=f"{tpe}-meal blood sugar".capitalize())
        x00_pt = str(datetime.datetime.strptime(x[0], dt_format) + datetime.timedelta(days=1))
        x01_pt = str(datetime.datetime.strptime(x[len(x) - 1], dt_format) - datetime.timedelta(days=1))
        if len(x) > 1:
            layout.update(dict(shapes = [
                {'type': 'rect',
                'xref': 'x',
                'yref': 'y',
                'x0': x00_pt,
                'y0': mn,
                'x1': x01_pt,
                'y1': mn,
                'fillcolor': RED,
                'line': {'color': RED},
                'opacity': 0.9},
                {'type': 'rect',
                'xref': 'x',
                'yref': 'y',
                'x0': x00_pt,
                'y0': mx,
                'x1': x01_pt,
                'y1': mx,
                'fillcolor': RED,
                'line': {'color': RED},
                'opacity': 0.9}
            ]),
            annotations=[go.Annotation(text=f"Lowest normal<br>{tpe}-meal blood sugar<br>({mn})", x=x00_pt, y=mn,
            font=dict(color="#000000"), bgcolor='#ff7f0e'),
            go.Annotation(text=f"Highest normal<br>{tpe}-meal blood sugar<br>({mx})", x=x01_pt, y=mx,
            font=dict(color="#000000"), bgcolor='#ff7f0e')]
            )
        fig = go.Figure(data=[trace], layout=layout)
        div = plotly.offline.plot(fig, include_plotlyjs=False, output_type="div")
    return div
def plot_scatter(apc, ec, text, plot_file):

    scatter_data = go.Scatter(x=apc,
                              y=ec,
                              mode='markers',
                              marker=dict(color="black"),
                              text=text,
                              showlegend=False)

    diagonal = go.Scatter(x=[0, np.max(list(apc) + list(ec))],
                          y=[0, np.max(list(apc) + list(ec))],
                          mode="lines",
                          line=dict(color="darkgrey", width=4, dash="dot"),
                          showlegend=False)

    pearson_r = pearsonr(apc, ec)

    data = []
    data.append(diagonal)
    data.append(scatter_data)

    plot = {
        "data":
        data,
        "layout":
        go.Layout(font=dict(size=24),
                  yaxis=dict(title="Entropy Correction",
                             exponentformat="e",
                             showexponent='All',
                             scaleratio=1,
                             scaleanchor='x'),
                  xaxis=dict(title="Average Product Correction",
                             exponentformat="e",
                             showexponent='All',
                             scaleratio=1,
                             scaleanchor='y'),
                  annotations=go.Annotations([
                      go.Annotation(x=0.05,
                                    y=0.95,
                                    showarrow=False,
                                    text='Pearson r = {0}'.format(
                                        np.round(pearson_r[0], decimals=3)),
                                    font=dict(color="black", size=24),
                                    xref='paper',
                                    yref='paper')
                  ]),
                  margin=dict(t=10),
                  width="550",
                  height="500")
    }

    plotly_plot(plot, filename=plot_file, auto_open=False, show_link=False)
    def correlationMatrix(self, df, title):
        """Create and display a correlation matrix for every column in df."""

        #setup
        ldf = df.copy()
        ldf.replace(0, np.nan, inplace=True)
        labs = ldf.columns.values
        mat = ldf.corr(
            min_periods=10
        ).values  # get correlation mat with minimum samples for calculation

        #add annotations
        annotations = go.Annotations()
        for i, r in enumerate(mat):
            for ii, rr in enumerate(r):
                annotations.append(
                    go.Annotation(text=str('%.2f' % (rr)),
                                  x=labs[i],
                                  y=labs[ii],
                                  xref='x1',
                                  yref='y1',
                                  showarrow=False,
                                  font=dict(size=8, color='black')))

        #develop layout
        layout = go.Layout(title={"text": title},
                           xaxis={
                               "tickfont": {
                                   "size": 8
                               },
                               "showgrid": False
                           },
                           yaxis={
                               "tickfont": {
                                   "size": 8
                               },
                               "showgrid": False
                           },
                           plot_bgcolor='grey',
                           autosize=False,
                           annotations=annotations)

        #add data from ldf
        data = go.Heatmap(type='heatmap',
                          x=ldf.columns.values,
                          y=ldf.columns.values,
                          z=mat,
                          colorscale='blues')

        #create and show figure
        fig = go.Figure(data=data, layout=layout)
        fig.show()
def add_data_source_note(fig):
    fig['layout'].update(annotations=go.Annotations([
        go.Annotation(
            text='Data source: Yahoo Finance',
            showarrow=False,
            xref='paper',
            yref='paper',
            x=0.98,
            y=0.02,
            bgcolor='#FFFFFF'  # white
        )
    ]))
    return fig
Exemple #12
0
def generate_heatmap(value):
    df = xyq_tools.getEntity()
    if value is None:
        return {'data': []}
    else:
        dff = df.loc[value, :]
        scaled_size = 200 + 150 + 50 * len(value)
        #        for row in dff.iterrows():
        z = dff.values.T.tolist()
        y = dff.columns.tolist()
        x = dff.index.T.tolist()
        print(x)
        print(y)
        print(z)
        annotations = []
        for n, row in enumerate(z):
            for m, val in enumerate(row):
                annotations.append(
                    go.Annotation(text=str(z[n][m]),
                                  x=x[m],
                                  y=y[n],
                                  xref='x1',
                                  yref='y1',
                                  showarrow=False))
        return {
            'data': [{
                'z': dff.values.T.tolist(),
                'y': dff.columns.tolist(),
                'x': dff.index.tolist(),
                'ygap': 2,
                'reversescale': 'true',
                'colorscale': [[0, "#caf3ff"], [1, "#2c82ff"]],
                'type': 'heatmap',
            }],
            'layout': {
                'height': 750,
                'width': scaled_size,
                'xaxis': {
                    'side': 'top'
                },
                'annotations': annotations,
                'margin': {
                    'l': 200,
                    'r': 100,
                    'b': 150,
                    't': 100,
                }
            }
        }
Exemple #13
0
 def make_annotations(pos, text, font_size=10, font_color='rgb(250,250,250)'):
     L=len(pos)
     if len(text)!=L:
         raise ValueError('The lists pos and text must have the same len')
     annotations = go.Annotations()
     for k in range(L):
         annotations.append(
             go.Annotation(
             text=labels[k], # or replace labels with a different list for the text within the circle
             x=pos[k][0], y=2*M-position[k][1],
             xref='x1', yref='y1',
             font=dict(color=font_color, size=font_size),
             showarrow=False)
         )
     return annotations
Exemple #14
0
def make_annotation(x, y):
    return go.Annotation(
        text=str(x),     # text is the y-coord
        showarrow=False, # annotation w/o arrows, default is True
        x=x,               # set x position
        xref='x',          # position text horizontally with x-coords
        xanchor='left',  # x position corresp. to center of text
        yref='y',            # set y position
        yanchor='auto',       # position text vertically with y-coords
        y=y,                 # y position corresp. to top of text
        font=go.Font(
            color='#262626',  # set font color
            size=13           #   and size
        )
    )
Exemple #15
0
    def make_annotations(self, font_size=20, font_color='rgb(250,250,250)'):

        annotations = dict() #go.Annotations()
        nodes = self.snapshots[self.current_snapshot_index]['nodes']

        for node, value in nodes.items():
            annotations[node] = go.Annotation(
                        text=node.key, # or replace labels with a different list for the text within the circle 
                        x=value[0][0], y=value[0][1],
                        xref='x1', yref='y1',
                        font=dict(color=font_color, size=font_size),
                        showarrow=False
                    )
        #endfor

        return annotations
Exemple #16
0
def create_annotated_heatmap(x=None, y=None, z=None):
    data = go.Heatmap(z=z, x=x, y=y, colorscale='Viridis')

    annotations = go.Annotations()
    for n, row in enumerate(z):
        for m, val in enumerate(row):
            annotations.append(go.Annotation(text=str(z[n][m]), x=x[m], y=y[n], xref='x1', yref='y1', showarrow=False))

    fig = go.Figure(data=go.Data([data]))
    fig['layout'].update(
        annotations=annotations,
        xaxis=go.XAxis(ticks='', title='y_pred', side='bottom'),
        yaxis=go.YAxis(ticks='', title='y_true', ticksuffix='  '),  # ticksuffix is a workaround to add a bit of padding
        autosize=False
    )
    return json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
Exemple #17
0
def update_graph4(product_selected1, product_selected2, product_selected3):

    z = confusion_matrix(y_test, y_pred)

    trace15 = go.Heatmap(z=z,
                         x=['0', '1'],
                         y=['1', '0'],
                         colorscale=["#ab6d41", "#ffb785"])

    xx = [0, 1]
    yy = [1, 0]

    annotations = go.Annotations()
    for n, row in enumerate(z):
        for m, val in enumerate(row):
            annotations.append(
                go.Annotation(text=str(z[n][m]),
                              x=xx[m],
                              y=yy[n],
                              xref='x1',
                              yref='y1',
                              showarrow=False))

    return {
        'data': [trace15],
        'layout':
        go.Layout(
            font=dict(family="Arial Narrow, sans-serif",
                      color="black",
                      size=16),
            annotations=annotations,
            width=400,
            height=400,
            autosize=False,
            showlegend=False,
            yaxis=dict(tickmode='array',
                       tickvals=[-0.5, 0, 0.5, 1, 1.5],
                       ticktext=['', 'Self-harm', '', 'No<br>self-harm', '']),
            xaxis=dict(tickmode='array',
                       tickvals=[-0.5, 0, 0.5, 1, 1.5],
                       ticktext=['', 'No self-harm', '', 'Self-harm', '']),
            title='<b>Confusion Matrix</b>',
            yaxis_title_text='<b>actual</b>',
            xaxis_title_text='<b>predicted</b>',
            paper_bgcolor='#F5F5F7')
    }
Exemple #18
0
    def make_annotations(pos, info, font_size=8, font_color='rgb(0,0,0)'):
        L = len(pos)
        if len(info) != L:
            raise ValueError(
                'make_annotations()::The lists pos and info must have the same len'
            )

        annotations = go.Annotations()
        for k in range(L):
            item = go.Annotation(
                text=info[k],  # text to be shown within the node  
                x=pos[k][0],
                y=pos[k][1],
                xref='x1',
                yref='y1',
                font=dict(color=font_color, size=font_size),
                showarrow=False)
            annotations.append(item)

        return annotations
 def make_annotations(pos, text, font_size=14, font_color='#fff'):
     if len(text) != L:
         raise ValueError('The lists pos and text must have the same len')
     labels = go.Annotations()
     for k in pos:
         labels.append(
             go.Annotation(
                 text=annotations[vertex_to_i[k]],
                 x=pos[k][0],
                 y=2 * M - position[k][1],
                 xref='x1',
                 yref='y1',
                 font=dict(color=font_color, size=font_size),
                 showarrow=False,
                 bgcolor='#6175c1',
                 bordercolor='#c7c7c7',
                 borderwidth=1,
                 borderpad=2,
             ), )
     return labels
Exemple #20
0
def MakeAnnotations(positions,
                    texts,
                    font_size=10,
                    font_color='rgb(250,250,250)'):
    posLength = len(positions)
    textLength = len(texts)
    if (posLength != textLength):
        raise ValueError('Position and texts mismatch.')
    annotations = objs.Annotations()
    for k in range(posLength):
        currentColor = font_color
        currentText = texts[k]
        if (texts[k] == "None"):
            currentText = "X"
            currentColor = "red"
        annotations.append(
            objs.Annotation(text=currentText,
                            x=positions[k][0],
                            y=positions[k][1],
                            xref='x1',
                            yref='y1',
                            font=dict(color=currentColor, size=font_size),
                            showarrow=False))
    return annotations
Exemple #21
0
xx = np.linspace(1, 50, 1000)
yy = exponenial_func(xx, *popt)

trace1 = go.Scatter(x=x_to_fit,
                    y=cum_sum,
                    mode='markers',
                    marker=go.Marker(color='rgb(255, 127, 14)'),
                    name='Data')

trace2 = go.Scatter(x=xx,
                    y=yy,
                    mode='lines',
                    marker=go.Marker(color='rgb(31, 119, 180)'),
                    name='Fit')

annotation = go.Annotation(x=20, y=10, text='', showarrow=False)
layout = go.Layout(title='Fit datos COVID19, Colombia',
                   plot_bgcolor='rgb(229, 229, 229)',
                   xaxis=go.XAxis(zerolinecolor='rgb(255,255,255)',
                                  gridcolor='rgb(255,255,255)'),
                   yaxis=go.YAxis(zerolinecolor='rgb(255,255,255)',
                                  gridcolor='rgb(255,255,255)'),
                   annotations=[annotation])

data = [trace1, trace2]
fig = go.Figure(data=data, layout=layout)

st.write(fig)

# Gráficas por ciudad
st.title('Acumulado por Ciudad y R0 Estimado')
Exemple #22
0
def update_graph(filtered_df_json, value, settings, graph_mode, clusters,
                 threshold, graphName, xLabel, yLabel, zLabel, extraMin,
                 extraMax, seriesInput, dbTableInput, figure, vessels,
                 *filter_settings):
    if figure is not None:
        figure['data'] = []
        minSet = []
        gformula = ""
        gsols = 0.0
        gr_squared = 0.0
        valuesOrigin = ""
        # Populate with 2D Data when X and Y set TODO: Remove hardcode + Account for 3D
        if value[1] is None or value[2] is None:
            figure['data'] = []
        else:
            # Create the dataset for the vessels selected
            # Get specifications
            specifications = []
            for i in range(1, len(filter_settings), 3):
                specifications.append(
                    get_condition(filter_settings[i], filter_settings[i + 1],
                                  filter_settings[i + 2]))
            # Cleanup and prepare conditions
            conditions = []
            for specification in specifications:
                for condition in specification:
                    conditions.append(condition)

            # Obtain filtered df
            df = []
            singleLineAll = False
            secondAll = False
            for vessel in filter_settings[0]:
                if vessel == "All" and 'multiline' not in settings:
                    df = SQL().get_df_from_series(dbTableInput, seriesInput)
                    singleLineAll = True
                    break
                elif vessel == "All":
                    secondAll = True
                    continue
                df.append(dfs[vessel].get_filtered(conditions=conditions))

            if len(df) == 0 and secondAll:
                singleLineAll = True
                df = SQL().get_df_from_series(dbTableInput, seriesInput)

            if singleLineAll:
                dfsDF = df
            else:
                dfsDF = pd.concat(df)

            # Remove any NaN values
            print("THIS IS VALUE: {}".format(value))
            if value[0] == "2D":
                dfsDF = dfsDF.dropna(subset=[value[1], value[2]])
            else:
                dfsDF = dfsDF.dropna(subset=[value[1], value[2], value[3]])

            if threshold != "None":
                # Remove outliers NOTE: Adjust the threshold to modify how strictly filtered the data will be. So far tested 1, 1.5, 3. Strict ~ Lax
                mean = np.mean(dfsDF[value[1]])
                stdio = np.std(dfsDF[value[1]])
                print "Mean: " + str(mean) + " Std: " + str(stdio)
                dfsDF = dfsDF[np.abs(dfsDF[value[1]] - mean) <= (threshold *
                                                                 stdio)]

                mean = np.mean(dfsDF[value[2]])
                stdio = np.std(dfsDF[value[2]])
                print "Mean: " + str(mean) + " Std: " + str(stdio)
                dfsDF = dfsDF[np.abs(dfsDF[value[2]] - mean) <= (threshold *
                                                                 stdio)]

                if value[0] == "3D":
                    mean = np.mean(dfsDF[value[3]])
                    stdio = np.std(dfsDF[value[3]])
                    print "Mean: " + str(mean) + " Std: " + str(stdio)
                    dfsDF = dfsDF[np.abs(dfsDF[value[3]] -
                                         mean) <= (threshold * stdio)]

            # unqVessels = dfsDF['Vessel'].unique().tolist()
            unqVessels = filter_settings[0]
            print unqVessels

            # Set axis labels if any
            if xLabel == "":
                xName = value[1]
            else:
                xName = xLabel
            if yLabel == "":
                yName = value[2]
            else:
                yName = yLabel
            if graphName == "":
                if value[0] == "2D":
                    gName = value[1] + " vs " + value[2]
                else:
                    gName = value[1] + " vs " + value[2] + " vs " + value[3]
            else:
                gName = graphName

            # Multiline Logic
            if 'multiline' in settings:
                counter = 0
                benchmark = 0
                annotation = []
                sfList = SQL().get_vessel_codes()
                for vessel in unqVessels:
                    global valuesOrigin
                    valuesOrigin = vessel
                    print list(dfsDF)
                    if vessel == "All":
                        vesselRow = SQL().get_df_from_series(
                            dbTableInput, seriesInput)
                        if value[0] == "2D":
                            vesselRow = vesselRow.dropna(
                                subset=[value[1], value[2]])
                        else:
                            vesselRow = vesselRow.dropna(
                                subset=[value[1], value[2], value[3]])
                    else:
                        vesselRow = dfsDF.loc[dfsDF['Vessel'] == vessel]

                    # Clustering & Hover Data Generation
                    hoverData = []
                    if 'clustering' in settings:
                        vesselRow = k_means(value, vesselRow, clusters)
                        vesselRow['Vessel'] = pd.Series(vessel,
                                                        index=vesselRow.index)
                        hoverData = np.c_[vesselRow[value[1]],
                                          vesselRow[value[2]]]
                    else:
                        # Generate the Hover Data
                        # Iterate each row from db
                        for key, value1 in vesselRow.iterrows():
                            placeholderText = ""
                            # Iterate each column in the row
                            for index, row in value1.items():
                                # Compare the value in important_attributes
                                for col in full_attributes:
                                    if col == index:
                                        if isinstance(row, float):
                                            placeholderText += "<b>" + index + "</b>: " + str(
                                                round(row, 3)) + "<br>"
                                        else:
                                            placeholderText += "<b>" + index + "</b>: " + str(
                                                row) + "<br>"
                                        break
                            hoverData.append(placeholderText)
                    if 'datapoints' in settings:
                        if value[0] == "2D":
                            scatterPoints = go.Scatter(
                                x=vesselRow[value[1].encode('utf8')],
                                y=vesselRow[value[2].encode('utf8')],
                                name=vessel + " Marker",
                                mode='markers',
                                marker=go.Marker(color=colorList[counter]),
                                text=hoverData,
                            )
                        else:
                            scatterPoints = go.Scatter3d(
                                x=vesselRow[value[1].encode('utf8')],
                                y=vesselRow[value[2].encode('utf8')],
                                z=vesselRow[value[3].encode('utf8')],
                                name=vessel + " Marker",
                                mode='markers',
                                marker=go.Marker(color=colorList[counter]),
                                text=hoverData,
                            )
                        figure['data'].append(scatterPoints)
                    if 'regression' in settings:
                        if value[0] == "2D":
                            line_data, r_squared, sols, formula = regression(
                                vesselRow[value[1].encode('utf8')],
                                vesselRow[value[2].encode('utf8')], graph_mode,
                                extraMin, extraMax)

                            # tmpLst = []
                            # tmpLst.append(r_squared)
                            # tmpLst.append(sols)
                            # tmpLst.append(formula)
                            # gformula[vessel] = tmpLst
                            # gformula[vessel] = [r_squared, sols, formula]
                            global gr_squared, gsols, gformula
                            gr_squared = r_squared
                            gsols = sols
                            gformula = formula

                            eqString, supScript = generateEquationString(
                                formula)

                            bestFit = go.Scatter(
                                x=line_data['x'],
                                y=line_data['y'],
                                name=vessel + ' Line',
                                mode='lines',
                                marker=go.Marker(color=colorList[counter]),
                            )
                            figure['data'].append(bestFit)

                            if benchmark == 0:
                                benchmark = max(line_data['y'])

                            if vessel == "All":
                                vslCde = "All"
                            else:
                                vslCde = sfList[vessel]

                            annotation.append(
                                go.Annotation(x=min(line_data['x']) + 10,
                                              y=benchmark -
                                              counter * benchmark * 0.1,
                                              text=vslCde + ": " +
                                              eqString.format(*supScript),
                                              showarrow=False))
                            layout2d = go.Layout(
                                title=gName,
                                plot_bgcolor='rgb(229, 229, 229)',
                                xaxis=go.XAxis(
                                    title=xName,
                                    zerolinecolor='rgb(255,255,255)',
                                    gridcolor='rgb(255,255,255)'),
                                yaxis=dict(title=yName,
                                           zerolinecolor='rgb(255,255,255)',
                                           gridcolor='rgb(255,255,255)'),
                                annotations=annotation,
                                # yaxis2=dict(title='Percentage', gridcolor='blue', overlaying='y', side='right', range=[100,0]),
                            )
                            figure['layout'] = layout2d
                        else:
                            surfacePlot, surfaceLayout = plot_3d(
                                vesselRow[value[1].encode('utf8')],
                                vesselRow[value[2].encode('utf8')],
                                vesselRow[value[3].encode('utf8')], value[1],
                                value[2], value[3])
                            figure['data'].append(surfacePlot)
                            figure['layout'] = surfaceLayout
                    counter += 1
            else:  # If no multiline
                # Clustering & Hover Data Generation
                hoverData = []
                if 'clustering' in settings:
                    dfsDF = k_means(value, dfsDF, clusters)
                    hoverData = np.c_[dfsDF[value[1]], dfsDF[value[2]]]
                else:
                    # Generate the Hover Data
                    # Iterate each row from db
                    for key, value1 in dfsDF.iterrows():
                        placeholderText = ""
                        # Iterate each column in the row
                        for index, row in value1.items():
                            # Compare the value in important_attributes
                            for col in full_attributes:
                                if col == index:
                                    if isinstance(row, float):
                                        placeholderText += "<b>" + index + "</b>: " + str(
                                            round(row, 3)) + "<br>"
                                    else:
                                        placeholderText += "<b>" + index + "</b>: " + str(
                                            row) + "<br>"
                                    break
                        hoverData.append(placeholderText)

                if value[0] == "2D":
                    # Add scatter from data set if 'datapoints' toggled
                    if len(figure['data']) < 1:
                        figure['data'].append({})
                    if 'datapoints' in settings:
                        figure['data'][0] = go.Scatter(
                            x=dfsDF[value[1].encode('utf8')],
                            y=dfsDF[value[2].encode('utf8')],
                            name='Data Marker',
                            mode='markers',
                            text=hoverData,
                        )
                    else:
                        figure['data'][0] = None

                    # Add Line/Curve if 'regression' toggled
                    if len(figure['data']) < 2:
                        figure['data'].append({})
                    if 'regression' in settings:
                        line_data, r_squared, sols, formula = regression(
                            dfsDF[value[1].encode('utf8')],
                            dfsDF[value[2].encode('utf8')], graph_mode,
                            extraMin, extraMax)
                        print "R-Squared: " + str(r_squared)
                        print "Sum of Least Squares: " + str(sols)
                        print "A Formula: "
                        print formula
                        # global gr_squared, gsols, gformula
                        gr_squared = r_squared
                        gsols = sols
                        gformula = formula

                        eqString, supScript = generateEquationString(formula)

                        figure['data'][1] = go.Scatter(
                            x=line_data['x'],
                            y=line_data['y'],
                            name='Line',
                            mode='lines',
                        )
                        annotation = go.Annotation(x=min(line_data['x']) + 10,
                                                   y=max(line_data['y']),
                                                   text="y=" +
                                                   eqString.format(*supScript),
                                                   showarrow=False)

                        layout2d = go.Layout(
                            title=gName,
                            plot_bgcolor='rgb(229, 229, 229)',
                            xaxis=go.XAxis(title=xName,
                                           zerolinecolor='rgb(255,255,255)',
                                           gridcolor='rgb(255,255,255)'),
                            yaxis=dict(title=yName,
                                       zerolinecolor='rgb(255,255,255)',
                                       gridcolor='rgb(255,255,255)'),
                            annotations=[annotation],
                            # yaxis2=dict(title='Percentage', gridcolor='blue', overlaying='y', side='right', range=[100,0]),
                        )
                        figure['layout'] = layout2d
                    else:
                        figure['data'][1] = None
                else:
                    # 3D
                    # Add scatter from data set if 'datapoints' toggled
                    if len(figure['data']) < 1:
                        figure['data'].append({})
                    if 'datapoints' in settings:
                        figure['data'][0] = go.Scatter3d(
                            x=dfsDF[value[1].encode('utf8')],
                            y=dfsDF[value[2].encode('utf8')],
                            z=dfsDF[value[3].encode('utf8')],
                            name='Data Marker',
                            mode='markers',
                            text=hoverData,
                        )
                    else:
                        figure['data'][0] = None

                    # Add Line/Curve if 'regression' toggled
                    if len(figure['data']) < 2:
                        figure['data'].append({})
                    if 'regression' in settings:
                        surfacePlot, surfaceLayout, minimumSet = plot_3d(
                            dfsDF[value[1].encode('utf8')],
                            dfsDF[value[2].encode('utf8')],
                            dfsDF[value[3].encode('utf8')], value[1], value[2],
                            value[3])
                        figure['data'][1] = surfacePlot
                        figure['layout'] = surfaceLayout
                        minSet = minimumSet
                        print "MINSET"
                        print minSet
                    else:
                        figure['data'][1] = None

                    figure['layout']['scene']['xaxis']['title'] = xName
                    figure['layout']['scene']['yaxis']['title'] = yName
                    figure['layout']['scene']['zaxis']['title'] = zName
                    figure['layout']['title'] = gName

        # Clean figure data
        figure['data'] = [i for i in figure['data'] if i is not None]
        return figure
    return default_figure
def predyellowcardweek(tid=None):
    mydb = mysql.connector.connect(
    host="localhost",
    user="******",
    passwd="battlefield4",
    database="footballmanagement"
    )

    mycursor = mydb.cursor()

    if tid==None:
        mycursor.execute("select count(eid),matches.mid from event,matches where event.`Type`='Y' and event.mid=matches.mid and matches.season='2017/18' group by event.mid order by mid asc;")
    else:
        mycursor.execute("select count(eid),matches.mid from event,matches where event.`Type`='Y' and event.tid="+str(tid)+" and event.mid=matches.mid and matches.season='2017/18' group by event.mid order by mid asc;")

    myresult = mycursor.fetchall()
    # print(myresult)
    x1 = list()
    ctr=0
    for x in myresult:
        x1.append((ctr,x[0]))
        ctr=ctr+1

    # print(x1)
    x=x1

    points = np.array(x)

    x = points[:,0]
    y = points[:,1]

    z = np.polyfit(x, y, 3)
    f = np.poly1d(z)

    x_new = np.linspace(0, 40, 50)
    y_new = f(x_new)

    trace1 = go.Scatter(
        x=x,
        y=y,
        mode='markers',
        name='Data',
        marker=dict(
            size=12
        )
    )

    trace2 = go.Scatter(
        x=x_new,
        y=y_new,
        mode='lines',
        name='Fit'
    )

    annotation = go.Annotation(
        x=6,
        y=-4.5,
        text='Chelsea expected goals',
        showarrow=False
    )

    layout = go.Layout(
        title='Polynomial Fit',
        annotations=[annotation]
    )

    data = [trace1,trace2]
    fig = go.Figure(data=data, layout=layout)

    # py.plot(data, filename='interpolation-and-extrapolation')
    graphJSON = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)
    print(data)
    return graphJSON
Exemple #24
0
# Extracts the labels for the legend
genres = list(Titles.index.values)
platforms = list(Titles.columns.values)

# Label of heatmap cells
annotations = go.Annotations()
for i, row in enumerate(Sales.values):
    for j, val in enumerate(row):
        annotations.append(
            go.Annotation(text=str(Popularity[i][j]),
                          x=platforms[j],
                          y=genres[i],
                          xref='x1',
                          yref='y1',
                          showarrow=False,
                          font={
                              'size': 11,
                              'color': 'white'
                          } if Popularity[i][j] < 4.5 else {
                              'size': 11,
                              'color': 'black'
                          }))

# Hover text info. Numbers of titles produced
titles_info = Titles.values.astype(str)
sales_info = Sales.values.astype(str)
for i, row in enumerate(Titles.values):
    for j, val in enumerate(row):
        titles_info[i][j] = "Number of titles: " + str(titles_info[i][j])

# Layout of the heatmap graph
Exemple #25
0
def make_readdepth_regression_plot(loci_dict,average=True):
    # this requires the R^2 added to loci_dict in the 'make_comparison_plots' function
    layout = go.Layout(
        title='distribution of the regression fits',
        width=1500,
        height=640,
        hovermode='closest',
        legend=dict(
            orientation='h'
        ),
        yaxis=dict(
            title='R^2 value'
        ),
        xaxis=dict(
            title='total reads of '
        )
    )
    r_list = []
    c_list = []
    t_list = []
    for sample,value in loci_dict.items():
        info = value['info']
        if 'r_squared' in info:
            if average:
                r_list.append(sum(info['r_squared'])/len(info['r_squared']))
            else:
                r_list.append(max(info['r_squared']))
            c_list.append(int(info['count']))
            t_list.append(sample)
    #scatter trace
    scatter = go.Scatter(
        x = c_list,
        y = r_list,
        mode='markers',
        text=t_list,
        marker=dict(
            size=5,
            line=dict(
                width=0.5,
            )
        )
    )
    # fitting logaritmic function
    """
    #creating subset
    c_sub_list = []
    r_sub_list = []
    c_treshold = 300000
    for i,count in enumerate(c_list):
        if count < c_treshold:
            c_sub_list.append(count)
            r_sub_list.append(r_list[i].round(2))
    """
    # the math function as python function
    def fivepl(x, b, c):
        a = 0
        d = 1
        g = 0.25
        # https: // en.wikipedia.org / wiki / Generalised_logistic_function
        # https://stats.stackexchange.com/questions/190107/curve-fit-with-logarithmic-regression-in-python/338472#338472
        return (((a - d) / numpy.power(1 + (numpy.power((x / c),b)), g)) + d)
    #popt,pcov = scipy.optimize.curve_fit(lambda t,a,b: a+b*numpy.log(t), c_list, r_list)
    popt,pcov = scipy.optimize.curve_fit(fivepl, c_list, r_list, bounds=([0.1,1000],[5,10000]))
    fit_max = max(c_list)
    xi = numpy.arange(1, fit_max, (fit_max/100))
    line = fivepl(xi,*popt)
    fit_trace = go.Scatter(
        x=xi,
        y=line,
        mode='lines',
        marker=go.Marker(color='rgb(31, 119, 180)'),
        name='Fit'
    )
    layout_text = "growth rate = {:.2f}<br>inflection point = {:0f}".format(*popt)
    annotation1 = go.Annotation(
        x=0,
        y=1,
        xref='paper',
        yref='paper',
        yanchor='middle',
        xanchor='left',
        text=layout_text,
        align='left',
        font=go.Font(size=8),
        showarrow=False
    )
    #get the count cutoff
    cutoff = optimize.fsolve(lambda x: fivepl(x, *popt) - 0.965,1000)
    annotation2 = go.Annotation(
        x=cutoff[0],
        y=0.5,
        yanchor="middle",
        xanchor='left',
        text=str(int(cutoff[0])),
        align='left',
        showarrow=False
    )
    layout.update(
        shapes=[{
            'type': 'line',
            'x0': cutoff[0],
            'x1': cutoff[0]+1,
            'y0':0,
            'y1':1,
            'line': {
                'color': 'rgb(55, 128, 191)',
                'width': 3,
                'dash': 'dashdot',
            },
        }],
        annotations = [annotation1,annotation2]
    )
    # return the graph
    fig = dict(data=[scatter,fit_trace], layout=layout)
    div = pyoff.plot(fig, include_plotlyjs=False, output_type='div')
    return div
Exemple #26
0
    def draw_text(self, **props):
        """Create an annotation dict for a text obj.

        Currently, plotly uses either 'page' or 'data' to reference
        annotation locations. These refer to 'display' and 'data',
        respectively for the 'coordinates' key used in the Exporter.
        Appropriate measures are taken to transform text locations to
        reference one of these two options.

        props.keys() -- [
        'text',         (actual content string, not the text obj)
        'position',     (an x, y pair, not an mpl Bbox)
        'coordinates',  ('data', 'axes', 'figure', 'display')
        'text_type',    ('title', 'xlabel', or 'ylabel')
        'style',        (style dict, see below)
        'mplobj'        (actual mpl text object)
        ]

        props['style'].keys() -- [
        'alpha',        (opacity of text)
        'fontsize',     (size in points of text)
        'color',        (hex color)
        'halign',       (horizontal alignment, 'left', 'center', or 'right')
        'valign',       (vertical alignment, 'baseline', 'center', or 'top')
        'rotation',
        'zorder',       (precedence of text when stacked with other objs)
        ]

        """
        self.msg += "    Attempting to draw an mpl text object\n"
        if not mpltools.check_corners(props['mplobj'], self.mpl_fig):
            warnings.warn(
                "Looks like the annotation(s) you are trying \n"
                "to draw lies/lay outside the given figure size.\n\n"
                "Therefore, the resulting Plotly figure may not be \n"
                "large enough to view the full text. To adjust \n"
                "the size of the figure, use the 'width' and \n"
                "'height' keys in the Layout object. Alternatively,\n"
                "use the Margin object to adjust the figure's margins.")
        align = props['mplobj']._multialignment
        if not align:
            align = props['style']['halign']  # mpl default
        if 'annotations' not in self.plotly_fig['layout']:
            self.plotly_fig['layout']['annotations'] = go.Annotations()
        if props['text_type'] == 'xlabel':
            self.msg += "      Text object is an xlabel\n"
            self.draw_xlabel(**props)
        elif props['text_type'] == 'ylabel':
            self.msg += "      Text object is a ylabel\n"
            self.draw_ylabel(**props)
        elif props['text_type'] == 'title':
            self.msg += "      Text object is a title\n"
            self.draw_title(**props)
        else:  # just a regular text annotation...
            self.msg += "      Text object is a normal annotation\n"
            if props['coordinates'] is not 'data':
                self.msg += "        Text object isn't linked to 'data' " \
                            "coordinates\n"
                x_px, y_px = props['mplobj'].get_transform().transform(
                    props['position'])
                x, y = mpltools.display_to_paper(
                    x_px, y_px, self.plotly_fig['layout']
                )
                xref = 'paper'
                yref = 'paper'
                xanchor = props['style']['halign']  # no difference here!
                yanchor = mpltools.convert_va(props['style']['valign'])
            else:
                self.msg += "        Text object is linked to 'data' " \
                            "coordinates\n"
                x, y = props['position']
                axis_ct = self.axis_ct
                xaxis = self.plotly_fig['layout']['xaxis{0}'.format(axis_ct)]
                yaxis = self.plotly_fig['layout']['yaxis{0}'.format(axis_ct)]
                if (xaxis['range'][0] < x < xaxis['range'][1]
                        and yaxis['range'][0] < y < yaxis['range'][1]):
                    xref = 'x{0}'.format(self.axis_ct)
                    yref = 'y{0}'.format(self.axis_ct)
                else:
                    self.msg += "            Text object is outside " \
                                "plotting area, making 'paper' reference.\n"
                    x_px, y_px = props['mplobj'].get_transform().transform(
                        props['position'])
                    x, y = mpltools.display_to_paper(x_px, y_px,
                                                     self.plotly_fig['layout'])
                    xref = 'paper'
                    yref = 'paper'
                xanchor = props['style']['halign']  # no difference here!
                yanchor = mpltools.convert_va(props['style']['valign'])
            annotation = go.Annotation(
                text=(str(props['text']) if
                      isinstance(props['text'], six.string_types) else
                      props['text']),
                opacity=props['style']['alpha'],
                x=x,
                y=y,
                xref=xref,
                yref=yref,
                align=align,
                xanchor=xanchor,
                yanchor=yanchor,
                showarrow=False,  # change this later?
                font=go.layout.annotation.Font(
                    color=props['style']['color'],
                    size=props['style']['fontsize']
                )
            )
            self.plotly_fig['layout']['annotations'] += annotation,
            self.msg += "    Heck, yeah I drew that annotation\n"
def goalteam(tid=None):
    # print("booo")
    mydb = mysql.connector.connect(host="localhost",
                                   user="******",
                                   passwd="battlefield4",
                                   database="footballmanagement")

    mycursor = mydb.cursor()

    if tid == None:
        mycursor.execute(
            "select matches.Season,count(goal.GID) from goal,matches,teams where goal.mid=matches.mid and goal.tid=teams.tid group by matches.season;"
        )
    else:
        mycursor.execute(
            "select matches.Season,count(goal.GID) from goal,matches,teams where goal.mid=matches.mid and goal.tid=teams.tid and teams.tid="
            + str(tid) + " group by matches.season;")

    myresult = mycursor.fetchall()
    # print(myresult)
    x1 = list()
    ctr = 0
    for x in myresult:
        x1.append((ctr, x[1]))
        ctr = ctr + 1

    # print(x1)
    x = x1

    points = np.array(x)

    x = points[:, 0]
    y = points[:, 1]

    z = np.polyfit(x, y, 3)
    f = np.poly1d(z)
    print("hello")
    x_new = np.linspace(0, 30, 50)
    y_new = f(x_new)
    print(y_new)

    trace1 = go.Scatter(x=x,
                        y=y,
                        mode='markers',
                        name='Data',
                        marker=dict(size=12))

    trace2 = go.Scatter(x=x_new, y=y_new, mode='lines', name='Fit')

    annotation = go.Annotation(x=6,
                               y=-4.5,
                               text='Chelsea expected goals',
                               showarrow=False)

    layout = go.Layout(title='Polynomial Fit', annotations=[annotation])

    data = [trace1, trace2]
    fig = go.Figure(data=data, layout=layout)

    # # py.plot(fig, filename='interpolation-and-extrapolation')
    # graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
    # # print(graphJSON)
    # points = np.array([(1, 1), (2, 4), (3, 1), (9, 3)])

    # x = points[:,0]
    # y = points[:,1]

    # z = np.polyfit(x, y, 3)
    # f = np.poly1d(z)

    # x_new = np.linspace(0, 10, 50)
    # y_new = f(x_new)

    # trace1 = go.Scatter(
    #     x=x,
    #     y=y,
    #     mode='markers',
    #     name='Data',
    #     marker=dict(
    #         size=12
    #     )
    # )

    # trace2 = go.Scatter(
    #     x=x_new,
    #     y=y_new,
    #     mode='lines',
    #     name='Fit'
    # )

    # annotation = go.Annotation(
    #     x=6,
    #     y=-4.5,
    #     text='$0.43X^3 - 0.56X^2 + 16.78X + 10.61$',
    #     showarrow=False
    # )

    # layout = go.Layout(
    #     title='Polynomial Fit in Python',
    #     annotations=[annotation]
    # )

    # data = [trace1, trace2]
    # fig = go.Figure(data=data, layout=layout)

    # py.plot(data, filename='interpolation-and-extrapolation')
    # graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
    # print(graphJSON)

    # count = 500
    # xScale = np.linspace(0, 100, count)
    # yScale = np.random.randn(count)

    # # Create a trace
    # trace = go.Scatter(
    #     x = xScale,
    #     y = yScale
    # )

    # data = [trace]
    graphJSON = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder)

    return graphJSON
Exemple #28
0
def plot_stacked_barchart_cath(stats_df, title, plot_out=None):

    plot_dict = {}
    for cath in np.unique(stats_df['cath_topology']):

        plot_dict[cath] = {}
        for dataset in np.unique(stats_df['dataset']):
            plot_dict[cath]['Set ' + str(dataset)] = len(stats_df.query('cath_topology == @cath and dataset == @dataset'))

    plot_df = pd.DataFrame(plot_dict)
    plot_df_relative = plot_df.apply(lambda x: x/np.sum(x), axis=1)
    plot_df.loc['Total'] = plot_df.sum(axis=0).tolist()
    plot_df_relative.loc['Total'] = plot_df.loc['Total'] / plot_df.loc['Total'].sum(axis=0)

    #add bar for every group == cath
    data = []
    for cath in plot_df.columns:
        data.append(
            go.Bar(
                x=plot_df_relative.index.tolist(),
                y=plot_df_relative[cath],
                showlegend=True,
                name=cath
            )
        )

    #add annotation for every bar
    y=0
    annotations_list = []
    for cath in plot_df.columns:
        y += plot_df_relative[cath]['Total']
        for dataset in plot_df.index.tolist():
            annotations_list.append(
                go.Annotation(
                    x=dataset,
                    y=y-0.1,
                    text=str(plot_df[cath][dataset]),
                    showarrow=False,
                    font=dict(color='#ffffff')
                )
            )

    plot = {
        "data": data,
        "layout": go.Layout(
            barmode="stack",
            title=title,
            yaxis=dict(
                title="Proportion of CATH classes",
                exponentformat="e",
                showexponent='All'
            ),
            annotations=go.Annotations(annotations_list),
            legend=dict(orientation="h"),
            font=dict(size=16)
        )
    }

    if title=="":
        plot['layout']['margin']['t'] = 10


    plotly_plot(plot, filename=plot_out, auto_open=False)
points = np.array([(1, 1), (2, 4), (3, 1), (9, 3)])

x = points[:, 0]
y = points[:, 1]

z = np.polyfit(x, y, 3)
f = np.poly1d(z)

x_new = np.linspace(0, 10, 50)
y_new = f(x_new)

trace1 = go.Scatter(x=x,
                    y=y,
                    mode='markers',
                    name='Data',
                    marker=dict(size=12))

trace2 = go.Scatter(x=x_new, y=y_new, mode='lines', name='Fit')

annotation = go.Annotation(x=6,
                           y=-4.5,
                           text='$0.43X^3 - 0.56X^2 + 16.78X + 10.61$',
                           showarrow=False)

layout = go.Layout(title='Polynomial Fit in Python', annotations=[annotation])

data = [trace1, trace2]
fig = go.Figure(data=data, layout=layout)

py.iplot(fig, filename='interpolation-and-extrapolation')
Exemple #30
0
def make_comparison_plots(name,set,loci_list,loci_dict,counts=None,subplots=True):
    set_size = len(set)
    annotations = []
    height = set_size*300
    width = set_size*300
    fig = tools.make_subplots(
        print_grid=subplots,
        rows=set_size,
        cols=set_size,
    )
    # horizontal_spacing (kwarg, float in [0,1], default=0.2 / columns)
    horizontal_spacing = 0.2/set_size
    # vertical_spacing (kwarg, float in [0,1], default=0.3 / rows)
    vertical_spacing = 0.3/set_size
    for plot_column in range(1,set_size+1):
        colory = colors2[plot_column]
        for plot_row in range(1,set_size+1):
            colorx = colors2[plot_row]
            plot_nr = plot_column + (plot_row - 1) * set_size
            if plot_row == plot_column:
                """
                if counts:
                    plot_nr = plot_x+(plot_y-1)*set_size
                    test_domain = dict(
                        x = fig['layout']['xaxis{}'.format(plot_nr)]['domain'],
                        y = fig['layout']['yaxis{}'.format(plot_nr)]['domain']
                    )
                    test_dict = go.Table(
                        columnwidth = [10,30],
                        domain = test_domain,
                        header = dict(
                            values = ['', set[plot_x-1]],
                            font = dict(size = 8),
                        ),
                        cells = dict(
                            values = ['rc', counts[set[plot_x-1]]],
                        )
                    )
                    fig['data'].append(test_dict)
                else:
                    pass
                """
                if counts:
                    info_text = "x-axis of this row: <br>{} <br> <br>pos: {},{} <br>read count: {} ".format(
                        set[plot_column-1],
                        loci_dict[set[plot_column-1]]['info']['plate'],
                        loci_dict[set[plot_column-1]]['info']['position'],
                        counts[set[plot_column-1]]
                    )
                    domain_x = fig['layout']['xaxis{}'.format(plot_nr)]['domain']
                    domain_y = fig['layout']['yaxis{}'.format(plot_nr)]['domain']
                    offset = (0.05 / (set_size-1))
                    annotation = go.Annotation(
                        x=domain_x[0],
                        y=domain_y[1],
                        width=((domain_x[1]-domain_x[0])-offset)*width,
                        height=(domain_y[1]-domain_y[0])*height,
                        xref='paper',
                        yref='paper',
                        yanchor='top',
                        xanchor='left',
                        text=info_text,
                        align='right',
                        showarrow=False,
                        bgcolor = 'lightgray'#colorx
                    )
                    annotations.append(annotation)
            #elif plot_x > plot_y:
                # half of the grid to safe the server some work.
            #    pass
            else:
                trace, layout_text, fit_trace = make_compare_trace(set[plot_row-1],set[plot_column-1],loci_list,loci_dict)
                fig.append_trace(fit_trace,plot_row,plot_column)
                fig.append_trace(trace,plot_row,plot_column)
                fig['layout']['xaxis{}'.format(plot_nr)].update(
                    tickvals = [0, 25, 50, 75, 100],
                    ticktext = ['0%', '', '50%', '', '100%']
                )
                #tickfont= dict(color=colorx)

                fig['layout']['yaxis{}'.format(plot_nr)].update(
                    tickvals = [0, 25, 50, 75, 100],
                    ticktext = ['0%','','50%','','100%'],
                )
                #tickfont = dict(color=colory)
                offset = (0.05/set_size)
                # x = 20,
                # y = 90,
                # xref = 'x' + str(plot_nr),
                # yref = 'y' + str(plot_nr),
                annotation = go.Annotation(
                    x = fig['layout']['xaxis{}'.format(plot_nr)]['domain'][0]+offset,
                    y = fig['layout']['yaxis{}'.format(plot_nr)]['domain'][1],
                    xref = 'paper',
                    yref = 'paper',
                    yanchor = 'middle',
                    xanchor = 'left',
                    text=layout_text,
                    align='left',
                    font=go.Font(size=8),
                    showarrow=False
                )
                annotations.append(annotation)
    # fix the layout
    # default figure margins: L=80,R=80,T=100,B=80
    fig['layout'].update(
        title='proportion comparison {}'.format(name),
        width=width+160,
        height=height+180,
        showlegend=False,
        hovermode='closest',
        legend=dict(
            orientation='h'
        ),
        annotations = annotations
    )
    # write the file
    #py.image.save_as(fig, filename=filename)
    div = pyoff.plot(fig, include_plotlyjs=False, output_type='div')
    return div