def plot(self): if self.backend == "mpl": plt.show() elif self.backend == "ipt": iplot_mpl(self.fig) else: plot_mpl(self.fig)
def plot(herd, title): colors = ['r','g','b'] fig, ax = plt.subplots() plt.title(title) for num, group in enumerate(herd.groups): x = [cow.energy_requirement for cow in group] y = [cow.protein_requirement for cow in group] ax.scatter(x, y, color=colors[num%3]) py.plot_mpl(fig, filename=title+".html", image_filename=title)
def plot(herd, title): colors = ['r', 'g', 'b'] fig, ax = plt.subplots() plt.title(title) for num, group in enumerate(herd.groups): x = [cow.energy_requirement for cow in group] y = [cow.protein_requirement for cow in group] ax.scatter(x, y, color=colors[num % 3]) py.plot_mpl(fig, filename=title + ".html", image_filename=title)
def get_plot_path_matplotlib_plotly(self, file_name='matplotlib_plotly.html'): path_plotly = self.path_dir_plotly_html + os.sep + file_name N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) area = np.pi * (15 * np.random.rand(N)) ** 2 # 0 to 15 point radii scatter_mpl_fig = plt.figure() plt.scatter(x, y, s=area, c=colors, alpha=0.5) pyof.plot_mpl(scatter_mpl_fig, filename=path_plotly, resize=True, auto_open=False) return path_plotly
trace=True, error_action='ignore', suppress_warnings=True, stepwise=True) print(stepwise_model.aic()) stepwise_model.fit(train) future_forecast = stepwise_model.predict(n_periods=test.shape[0]) print(future_forecast) future_forecast = pd.DataFrame(future_forecast, index=test.index) if i == 0: plt.title('EC2-Instances(USD)') if i == 1: plt.title('EC2-Andere(USD)') if i == 2: plt.title('EC2-ELB(USD)') if i == 3: plt.title('S3(USD)') if i == 4: plt.title('Gesamtkosten (USD)') plt.plot(future_forecast, label='Prediction') plt.plot(test, label='True') plt.legend() plt.show() result = seasonal_decompose(data, model='multiplicative', freq=10) fig = result.plot() plot_mpl(fig)
import csv import matplotlib.pyplot as plt import plotly plotly.offline.init_notebook_mode(connected=True) import plotly.offline as py import numpy as np # Learn about API authentication here: https://plot.ly/python/getting-started # Find your api_key here: https://plot.ly/settings/api results = [] with open("result2.csv") as csvfile: reader = csv.reader( csvfile, quoting=csv.QUOTE_NONNUMERIC) # change contents to floats for row in reader: # each row is a list results.append(row) x = results[0] y = results[1] fig, ax = plt.subplots() ax.scatter(x, y) plot_url = py.plot_mpl(fig, filename="mpl-scatter")