def generate_reports(): py.sign_in("juz19", "gns0PM7FQ368i6A8tNOZ") try: if not os.path.exists('challengedata'): os.makedirs('challengedata') except IOError as e: print('Failed to create directory: challengedata. ' + e) return averages = {} url_by_week = {} for sub in os.listdir(os.getcwd() + '/challengedata'): if sub.startswith('celpp_week'): rmsd, week_num, protocol = readJson(sub) print(week_num) if not rmsd: continue averages[week_num] = stats(rmsd) url_by_week[week_num] = py.plot(box_plot(rmsd, week_num), filename='Box Plot - ' + week_num.split('_')[1][4:], auto_open=False) html_string = ''' <html> <head> <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/bootstrap.min.css"> <style>body{ margin:0 100; background:whitesmoke; }</style> </head> <body> <h1>Week ''' + week_num.split( '_')[1][4:] + ''' Visualization of RMSD for Smina</h1> <!-- *** Section 1 *** ---> <h2>Section 1: RMSDs for All Targets in Week ''' + week_num.split( '_')[1][4:] + '''</h2> <iframe width="1000" height="550" frameborder="0" seamless="seamless" scrolling="no" \ src="''' + url_by_week[week_num] + '''.embed?width=800&height=550"></iframe> </body> </html>''' try: if not os.path.exists('visual'): os.makedirs('visual') if not os.path.exists('visual/' + week_num): os.makedirs('visual/' + week_num) f = open('visual/' + week_num + '/report.html', 'w') f.write(html_string) f.close() except IOError as e: print('Failed to create report.html. ' + e) break generate_summary(averages, week_num, url_by_week)
import plotly.plotly as py import plotly.tools as plotly_tools import plotly.graph_objs as go import plotly.offline as offline import os import matplotlib.pyplot as plt import matplotlib as mpl %matplotlib inline from scipy.stats import gaussian_kde from IPython.display import HTML py.sign_in("juz19", "gns0PM7FQ368i6A8tNOZ") def fetch_visual_file(): global wd wd = str(os.getcwd()) print('All Files will go into the celpp folder') cred = (wd + '/credentials.txt') try: #attempts to connect to file required to connect to ftp print('Trying to open credentials.txt') fo = open(cred, 'r') fo.close() except: #writes file required to connect to ftp if not already made print('Writing credentials.txt file')
from flask import Flask, render_template, request import plotly as py import pandas as pd import plotly.plotly as py import plotly.tools as plotly_tools from plotly.graph_objs import * import json import os py.sign_in("ACodeMZ", "FC5PBOKLqkR0GSFE94e9") app = Flask(__name__) # Read the csv into a pandas DataFrame data = pd.read_csv('FluNetInteractiveReport.csv') # Provide users with the raw data from their selected time frames # Option 1: Start date to end date # ex: Jan 1 2012 - Mar - 2013 # Option 2: Start date to end date with annual frequency # ex: Jan 1 - Mar 1 for the past 5 years # If user selects "Inclusive" - will deliver continuous filtered data from start week, start year, to end week of end year def time_filter_inclusive(start_year, start_week, end_year, end_week): #find start row temp_df = data.loc[data['Year']==start_year] start_row = temp_df.loc[temp_df['Week']==start_week] #find end row temp_df = data.loc[data['Year']==end_year] end_row = temp_df.loc[temp_df['Week']==end_week+1]
import plotly.plotly as py import plotly.tools as plotly_tools from plotly.graph_objs import * import os import tempfile os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp() from matplotlib.finance import quotes_historical_yahoo import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from IPython.display import HTML py.sign_in("jackp", "XXXX") ### Step 1: Generate 2 graphs and 2 tables for report with Plotly Python client #### First graph: 2014 Apple stock data with moving average # Let's grab Apple stock data using the <a href="http://matplotlib.org/api/finance_api.html">matplotlib finance</a> model from 2014, then take a moving average with a <a href="http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html">numpy convolution</a>. # In[154]: x = [] y = [] ma = [] def moving_average(interval, window_size):
-------------------------------------------------------------------------------------------------------------------------------------------------------- # Plot what are already have! import plotly as py plotly.tools.set_credentials_file(username='******', api_key='kveygo902q') import plotly.plotly as py import plotly.tools as plotly_tools from plotly.graph_objs import * py.sign_in(username='******', api_key='kveygo902q') #cluster DAD CL=0 print("this cluster: top level") fig, ax = plt.subplots(figsize=(10, 10)) teals = sns.light_palette("#18cfed", as_cmap=True, reverse=True) brightgreens = sns.light_palette("#03f90c", as_cmap=True, reverse=True) cmaps = ("Blues_r","Reds_r","Greens_r","Purples_r","Reds_r","Greys_r","Blues_r","Reds_r","Greens_r","Oranges_r","Purples_r","Greys_r") sns.cubehelix_palette(as_cmap=True,reverse=True,start=.1, rot=0, dark=.3)
trafico = trafico.set_index(['ESTACION'], append=True) trafico = trafico.unstack('FDIA') trafico = trafico.T trafico = trafico.reset_index() trafico.rename(columns={'level_0': 'FHORA'}, inplace=True) trafico['FDIA'] = trafico['FDIA'].str.cat(trafico["FHORA"], sep=" ") trafico.drop(['FHORA'], axis=1, inplace=True) trafico['FDIA'] = trafico['FDIA'].apply( lambda x: datetime.strptime(x, '%d/%m/%y %H:%M')) trafico.rename(columns={'FDIA': 'FECHA'}, inplace=True) trafico.sort_index(inplace=True) trafico2 = trafico #TRAFICO2 VARIABLE DE SEGUIMIENTO #Este dataframe se puede agrupar por dias, horas con la suma o la media. #la idea es lanzar querys a todo el dataframe según se quiera. trafico.reset_index(inplace=True) trafico = trafico.resample('D', on='FECHA').mean() trafico.drop(['index'], axis=1, inplace=True) del (catalogo, datos_descargados, estaciones, trafico1, trafico2) # ============================================================================= # Enviando a plotly (hay que entroducir las credenciales) # ============================================================================= plotly.tools.set_credentials_file(username='******', api_key='XXX') py.sign_in('XXX', 'XXX') cf.set_config_file(offline=False, world_readable=True, theme='ggplot') trafico.iplot(kind='scatter', filename='enero-febreo media de trafico por dia')
import plotly as py py.tools.set_credentials_file(username='******', api_key='r0oOvo7yWphavCbFEoMG') import plotly.plotly as py import plotly.graph_objs as go import plotly.tools as plotly_tools from plotly.graph_objs import * py.sign_in("adityac564", "r0oOvo7yWphavCbFEoMG") import re import tweepy from tweepy import OAuthHandler from textblob import TextBlob class TwitterClient(object): ''' Generic Twitter Class for sentiment analysis. ''' def __init__(self): ''' Class constructor or initialization method. ''' # keys and tokens from the Twitter Dev Console consumer_key = 'Dl6Xl0Xhxxxxxxxxxxxxx' consumer_secret = 'flrjl36HbaLj3xxxxxxxxxxxxxxx' access_token = '809633084370886657-He6xxxxxxxxxxxxxxx' access_token_secret = 'Cv37nNYgIDBvdn0KBiVSxxxxxxxxxxxxxx' # attempt authentication try: # create OAuthHandler object self.auth = OAuthHandler(consumer_key, consumer_secret)
from datetime import date as dt_date import plotly.tools as plotly_tools from plotly.graph_objs import * import os import tempfile os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp() from matplotlib.finance import quotes_historical_yahoo import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from IPython.display import HTML plotly.sign_in("jackp", "XXXX") date1 = dt_date(2014, 1, 1) date2 = dt_date(2014, 12, 12) tickers = ['AAPL', 'GE', 'IBM', 'KO', 'MSFT', 'PEP'] prices = [] for ticker in tickers: quotes = quotes_historical_yahoo(ticker, date1, date2) prices.append( [q[1] for q in quotes] ) # We have all the stock prices in a list of lists - use the code snippet below to convert this into a Pandas dataframe. df = pandas.DataFrame( prices ).transpose() df.columns = tickers
from datetime import time as dt_tm from datetime import date as dt_date import plotly.tools as plotly_tools from plotly.graph_objs import * import os import tempfile os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp() from matplotlib.finance import quotes_historical_yahoo import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from IPython.display import HTML plotly.sign_in("jackp", "XXXX") date1 = dt_date(2014, 1, 1) date2 = dt_date(2014, 12, 12) tickers = ['AAPL', 'GE', 'IBM', 'KO', 'MSFT', 'PEP'] prices = [] for ticker in tickers: quotes = quotes_historical_yahoo(ticker, date1, date2) prices.append([q[1] for q in quotes]) # We have all the stock prices in a list of lists - use the code snippet below to convert this into a Pandas dataframe. df = pandas.DataFrame(prices).transpose() df.columns = tickers df.head()
import plotly.plotly as py import plotly.tools as plotly_tools from plotly.graph_objs import * import os import tempfile os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp() from matplotlib.finance import quotes_historical_yahoo import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from IPython.display import HTML py.sign_in("yabebal", "amestkilo163291") #Let's grab Apple stock data using the matplotlib finance model from #2014, then take a moving average with a numpy convolution. x = [] y = [] ma = [] def moving_average(interval, window_size): window = np.ones(int(window_size))/float(window_size) return np.convolve(interval, window, 'same') date1 = dt_date( 2014, 1, 1 ) date2 = dt_date( 2014, 12, 12 ) quotes = quotes_historical_yahoo('AAPL', date1, date2) if len(quotes) == 0: