Exemple #1
0
def age_v_family_history(df, column, outfile=None):
    ''' Boxplot showing median age at diagnosis between
        pateints with and without a family history.
    '''
    df = df.dropna(subset=[column, 'family_history'])
    df = df[df['family_history'] != 'unknown']
    df['family_history'] = convert2category(df['family_history'],
                                            ['yes', 'no'])

    fig, ax = plt.subplots(figsize=(15, 12))
    sns.set(font_scale=1.5)
    sns.set_style("whitegrid")
    sns.set_palette('Greys')

    ax = sns.boxplot(data=df, x='family_history', y=column)
    ax.set(title="", ylabel='Age at Diagnosis', xlabel='', ylim=(0, 100))
    name_list = pm.rename_xtick(df, 'family_history')
    ax.set_xticklabels(name_list)

    family_history = df[df['family_history'] == 'yes'][column]
    no_family_history = df[df['family_history'] == 'no'][column]
    fam_p_val = str(
        pm.RoundToSigFigs(
            stats.ranksums(family_history, no_family_history)[1], 2))
    pm.line_between_plots(ax,
                          x1=0,
                          x2=1,
                          height=90,
                          string='p = ' + fam_p_val,
                          fontsize=18)

    if outfile:
        ax.figure.savefig(outfile)
Exemple #2
0
def fh_vs_genetic_diagnosis(df, outfile=None):
    ''' Countplot displaying counts for each variant classification
        split by family history.
    '''
    df = df.dropna(subset=['New Category'])
    df = df[df['family_history'] != 'unknown']
    df['family_history'] = convert2category(df['family_history'],
                                            ['yes', 'no'])

    sns.set_style("whitegrid")
    sns.set_palette('Greys')
    fig, ax = plt.subplots(figsize=(14, 12))
    name_list = pm.rename_xtick(df, 'family_history', counts=False)
    ax = sns.countplot(data=df, x='family_history', hue='New Category')
    ax.set(title="  .  ",
           xlabel="",
           ylabel="Samples",
           xticklabels=name_list,
           ylim=(0, 500))
    ax.legend(bbox_to_anchor=(0., 1.0, 1., .102),
              loc=8,
              ncol=3,
              mode="expand",
              borderaxespad=0.)

    # label percentages above bars
    fh_total = len(df[df['family_history'] == 'yes'])
    no_fh_total = len(df[df['family_history'] == 'no'])
    for p, total in zip(
            ax.patches,
        [fh_total, no_fh_total, fh_total, no_fh_total, fh_total, no_fh_total]):
        h = p.get_height()
        ax.text(p.get_x() + 0.15,
                h + 3,
                str('{:.1f}'.format((h / total) * 100) + "%"),
                ha='center')

    # STATS: As I am an anlasying a large number of samples, the chi-square test is approriate
    # and will yield a simliar result as the Fisher-Freeman-Halton test
    table = df.groupby(['family_history',
                        'New Category']).size().unstack(1).fillna(0.0)
    array = table.values.tolist()
    chi2, pvalue, dof, expected = stats.chi2_contingency(array)
    pm.line_between_plots(axs=ax,
                          x1=0,
                          x2=1,
                          height=array[1][2] + 20,
                          extend=10,
                          string="p = " + str(pm.RoundToSigFigs(pvalue, 3)),
                          fontsize=14)

    if outfile:
        ax.figure.savefig(outfile)
Exemple #3
0
def gender_vs_genetic_diagnosis(df, outfile=None):
    ''' Countplot displaying counts for each variant classification
        split by gender
    '''
    df = df.dropna(subset=['Gender', 'New Category'])

    sns.set(font_scale=1.2)
    sns.set_style("whitegrid")
    sns.set_palette("Greys")

    fig, ax = plt.subplots(figsize=(14, 12))
    ax = sns.countplot(data=df, x='Gender', hue='New Category')
    name_list = pm.rename_xtick(df, 'Gender', counts=False)
    ax.set_xticklabels(name_list)
    ax.set(title='  .  ', xlabel="", ylabel="Samples", ylim=(0, 700))
    ax.legend(bbox_to_anchor=(0., 1.0, 1., .102),
              loc=8,
              ncol=3,
              mode="expand",
              borderaxespad=0.)

    # STATS
    gen_total = len(df[df['Gender'] == 'Male'])
    no_gen_total = len(df[df['Gender'] == 'Female'])
    table = df.groupby(['Gender', 'New Category']).size().unstack(1)
    array = table.values.tolist()
    chi2, pvalue, dof, expected = stats.chi2_contingency(array)
    pm.line_between_plots(axs=ax,
                          x1=0,
                          x2=1,
                          height=array[0][2] + 45,
                          extend=10,
                          string="p = " + str(round(pvalue, 3)),
                          fontsize=14)

    # label percentages above bars
    for p, total in zip(ax.patches, [
            gen_total, no_gen_total, gen_total, no_gen_total, gen_total,
            no_gen_total
    ]):
        h = p.get_height()
        ax.text(p.get_x() + 0.15,
                h + 3,
                str(round((h / total), 3) * 100)[:4] + "%",
                ha='center')

    if outfile:
        fig = ax.get_figure()
        fig.savefig(outfile, bbox_inches='tight')

    return ax
Exemple #4
0
def variant_class_violin(df, column, title='', outfile=None):
    ''' Produces a violin plot of the age at surgery vs the variant class.'''
    df = df.dropna(subset=[column, 'New Category'])
    y_label = column.replace("age at diagnosis", "Age at Diagnosis")
    name_list = pm.rename_xtick(df,
                                'New Category',
                                NA=True,
                                validated_path=True)

    fig, ax = plt.subplots(figsize=(15, 12))
    sns.set(font_scale=1.5)
    sns.set_style("whitegrid")
    sns.set_palette('Greys')
    ax = sns.violinplot(data=df, x='New Category', y=column, cut=0)
    ax.set(title=title,
           ylabel=y_label,
           xlabel='',
           xticklabels=name_list,
           ylim=(0, 105))

    # Seperate and clean each variant class Series
    pathogenic = df[df['New Category'] == "Pathogenic/Likely Pathogenic"]
    pathogenic = sf.validated_only(pathogenic)[column].dropna()
    damaging = df[df['New Category'] == "VUS"][column].dropna()
    benign = df[df['New Category'] ==
                "Likely Benign / No Variant"][column].dropna()

    # Get unpaired ranksum wilcoxon p-values between each new category and place them upon the plot
    path_ben_p_val = str(
        pm.RoundToSigFigs(stats.ranksums(pathogenic, benign)[1], 3))
    pm.line_between_plots(ax,
                          x1=0,
                          x2=2,
                          height=benign.max() + 15,
                          string="p = " + path_ben_p_val,
                          fontsize=15)

    path_dam_p_val = str(
        pm.RoundToSigFigs(stats.ranksums(pathogenic, damaging)[1], 3))
    pm.line_between_plots(ax,
                          x1=0,
                          x2=1,
                          height=benign.max() + 10,
                          string="p = " + path_dam_p_val,
                          fontsize=15)

    dam_ben_p_val = str(
        pm.RoundToSigFigs(stats.ranksums(damaging, benign)[1], 3))
    pm.line_between_plots(ax,
                          x1=1,
                          x2=2,
                          height=benign.max() + 5,
                          string="p = " + dam_ben_p_val,
                          fontsize=15)

    if outfile:
        ax.figure.savefig(outfile)

    return ax
Exemple #5
0
def age_group_v_pathogenic_piechart(df, outfile=None):
    '''  Two side-by-side piecharts displaying patients under and over 50
         and the percentage of each variant class is present in each group.
    '''
    # remove non validated PLP variants and NaN values in Age Group
    df = df[~((df['validation'] == 0) &
              (df['New Category'] == 'Pathogenic/Likely Pathogenic'))]
    df = df.dropna(subset=['Age Group', 'New Category'])

    # create percentage lists for piechart
    table = df.groupby(['Age Group', 'New Category']).size()
    percentage_table = table.groupby(
        level=0).apply(lambda x: x / float(x.sum())).unstack().T
    young_percent = percentage_table['Under 50'].tolist(
    )[::-1]  # [PLP, VUS, Benign]
    old_percent = percentage_table['Over 50'].tolist()[::-1]

    # create values for xtick labels
    total_counts = df['Age Group'].value_counts().to_dict()
    young_xlabel = "Under 50\nn = {}".format(total_counts.get('Under 50'))
    old_xlabel = "Over 50\nn = {}".format(total_counts.get('Over 50'))

    # sharing an axis allows the use of pm.line_between_plots
    fig, ax = plt.subplots(figsize=(15, 12))
    mpl.rcParams['font.size'] = 12  # cannot find an ax method for this
    ax.pie(young_percent,
           labels=[
               'Likely Benign / No Variant', 'VUS',
               'Pathogenic/Likely Pathogenic'
           ],
           colors=['grey', 'silver', 'white'],
           shadow=False,
           autopct='%1.1f%%',
           center=(0, 0),
           startangle=90,
           labeldistance=1.2,
           pctdistance=0.7)
    ax.pie(old_percent,
           labels=[
               'Likely Benign / No Variant', 'VUS',
               'Pathogenic/Likely Pathogenic'
           ],
           colors=['grey', 'silver', 'white'],
           shadow=False,
           autopct='%1.1f%%',
           center=(2.5, 0),
           startangle=90,
           labeldistance=1.2,
           pctdistance=0.7)

    # axis modifications
    ax.axis('equal')
    ax.set_xticks([0, 2.5])
    ax.set_xticklabels([young_xlabel, old_xlabel])
    ax.tick_params(labelsize=15)

    # STATS
    # As I am an analysing a large number of samples, the chi-square test is approriate
    # and will yield a simliar result as the Fisher-Freeman-Halton test
    contingency_table = table.unstack().values.tolist()
    chi2, pvalue, dof, expected = stats.chi2_contingency(contingency_table)
    pm.line_between_plots(axs=ax,
                          x1=0,
                          x2=2.5,
                          height=1.5,
                          fontsize=15,
                          extend=0.2,
                          string="p = {}".format(pm.RoundToSigFigs(pvalue, 2)))
    if outfile:
        ax.figure.savefig(outfile)

    return ax