def plot_avg_vs_vp_id(self, prop, show=True): data = {} for vp in self.vps: data[vp.vp_id] = np.mean( [get_class_value(log, prop) for log in vp.logs]) plt.plot(range(len(data)), [d[1] for d in sorted(data.items())]) show_plot(show)
def prop_inspection(self, prop): self.data_matrix(prop) for v in self.ttest_multiple([prop], 2): print(v) # plt.figure().canvas.set_window_title(prop) f, ax = plt.subplots(2, 2) ax = ax.flatten() self.boxplot_all(prop, fig=ax[0]) self.boxplot_vs_run(prop, fig=ax[1]) self.plot_avg_vs_run(prop, fig=ax[2], global_run_counter=True) self.plot_avg_vs_run(prop, fig=ax[3]) show_plot()
def plot_gear_probability(self): data = defaultdict(lambda: [[] for _ in range(5)]) for log in self.all_logs(): d = data[log.condition] for i in range(len(log.t)): d[log.gear[i]].append(log.speed[i]) f, ax = plt.subplots(5) # one plot for each gear for cond, d in data.items(): # each condition for gear, o in enumerate(d): # each gear hist, bins = np.histogram(o, 30) x = [(bins[i] + bins[i + 1]) / 2 for i in range(len(bins) - 1)] ax[gear].plot(x, hist, c=condition2color(cond)) show_plot()
def plot_avg_vs_run(self, prop, global_run_counter=False, show=None, fig=None): data, max_items = self.data_vs_run( prop, global_run_counter=global_run_counter) for key, values in data.items(): errorbar( np.arange(max_items) + 1, values, ylabel=prop, xlabel='global run counter' if global_run_counter else 'run', colors=condition2color(key), show=show, fig=fig) show_plot(show)
if 0 < stop_condition < 3: correct = True else: print("Brak takiego kryterium") except ValueError: print("Brak takiego kryterium") accuracy = 0 iteration = 0 if stop_condition == 1: accuracy = abs(float(input("Podaj dokładność epsilon: "))) iteration = -1 else: iteration = int(input("Podaj liczbe iteracji: ")) accuracy = -1 result_bisection = bisection(left, right, accuracy, iteration, function_number) # miejsce zerowe (bisekcja) result_newton = newton(left, right, accuracy, iteration, function_number) # miejsce zerowe (netwon) if result_bisection is False: print("Bisekcja: Funkcja nie spełnia założeń na danym przedziale") else: print("Bisekcja - " + str(result_bisection)) if result_newton is False: print("Newton: Funkcja nie spełnia założeń na danym przedziale") else: print("Newton - " + str(result_newton)) show_plot(left, right, function_number, result_bisection, result_newton) # rysowanie wykresu