from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import h5py from plotstuff import params, colours reb = params() cols = colours() from gatspy.periodic import LombScargle import sys import multiprocessing as mp from multiprocessing import Pool from GProtation import make_plot, lnprob, Gprob, neglnlike import emcee import time import george from george.kernels import ExpSquaredKernel, ExpSine2Kernel import scipy.optimize as spo def periodograms(id, x, y, yerr, path, plot=False, savepgram=False): """ takes id of the star, returns an array of period measurements and saves the results. id: star id. x, y, yerr: time, flux and error arrays. path: path where you want to save the output. """ ps = np.linspace(2, 100, 1000) model = LombScargle().fit(x, y, yerr) pgram = model.periodogram(ps) # find peaks
# the 2nd K2pgram (periodogram of a 2nd frequency), # the data conditioned on the best freqency and the top # eigen light curves. import numpy as np import matplotlib.pyplot as plt import fitsio from K2pgram import K2pgram, eval_freq from rotation_poster_child import max_peak_detect import h5py from gatspy.periodic import LombScargle import wget import subprocess import scipy.signal as sps from plotstuff import colours cols = colours() def read_data(epid, nbases): # read the data try: data = fitsio.read("../data/c1/ktwo%s-c01_lpd-lc.fits" % epid) except: e = str(int(epid)) base_url = "http://bbq.dfm.io/ketu/lightcurves/c1" url = "%s/%s00000/%s000/ktwo%s-c01_lpd-lc.fits" \ % (base_url, e[:4], e[4:6], e) print url wget.download(url) subprocess.call("mv ktwo%s-c01_lpd-lc.fits ../data/c1" % epid, shell=True)