xk_recon = result_loop['xk_recon'] yk_recon = result_loop['yk_recon'] alpha_k_recon = result_loop['alpha_k_recon'] K_est = result_loop['K_est'] fitting_error_all.append(result_loop['fitting_error']) planar_plot_diracs_J2000( x_plt_grid=x_plt, y_plt_grid=y_plt, RA_focus_rad=sky_ra, DEC_focus_rad=sky_dec, x_ref=x_ks, y_ref=y_ks, amplitude_ref=alpha_ks, x_recon=xk_recon, y_recon=yk_recon, amplitude_recon=alpha_k_recon, cmap=parameter_set['cmap'], background_img=img_clean, marker_scale=parameter_set['marker_scale'], save_fig=save_fig, file_name=file_name + '_Kest_{}'.format(K_est), label_ref_sol='ground truth', label_recon='reconstruction', file_format=fig_format, dpi=parameter_set['dpi'], close_fig=True, title_str=r'$K_{{\rm est}}={0}$'.format(K_est)) fitting_error_all = np.array(fitting_error_all) # plot the objective function values against different K_est fig = plt.figure(figsize=(4, 2.5), dpi=90) ax = plt.axes([0.19, 0.185, 0.72, 0.72])
img_dirty = clean_data['img_dirty'] src_model_clean = clean_data['src_model'] x_plt_CLEAN = clean_data['x_plt_CLEAN_rad'] y_plt_CLEAN = clean_data['y_plt_CLEAN_rad'] file_name = fig_dir + \ 'visual_comparison_2src_dynamic_range{dynamic_range}'.format( dynamic_range=parameter_set['dynamic_range'] ) # back ground image: dirty image planar_plot_diracs_J2000( x_plt_grid=x_plt_CLEAN, y_plt_grid=y_plt_CLEAN, RA_focus_rad=sky_ra, DEC_focus_rad=sky_dec, background_img=img_dirty, cmap=parameter_set['cmap'], marker_scale=parameter_set['marker_scale'], marker_alpha=0.7, save_fig=save_fig, file_name=file_name + '_bg_img_dirty', label_ref_sol='ground truth', label_recon='reconstruction', file_format=fig_format, dpi=parameter_set['dpi'], close_fig=False, title_str='dirty image' ) # back ground image: CLEAN image planar_plot_diracs_J2000( x_plt_grid=x_plt_CLEAN, y_plt_grid=y_plt_CLEAN, RA_focus_rad=sky_ra, DEC_focus_rad=sky_dec, background_img=img_clean, cmap=parameter_set['cmap'], marker_scale=parameter_set['marker_scale'], marker_alpha=0.7, save_fig=save_fig, file_name=file_name + '_bg_img_clean', label_ref_sol='ground truth', label_recon='reconstruction',
x_plt_CLEAN = clean_data['x_plt_CLEAN_rad'] y_plt_CLEAN = clean_data['y_plt_CLEAN_rad'] file_name = fig_dir + 'visual_comparison_2src_sep' # back ground image: dirty image planar_plot_diracs_J2000(x_plt_grid=x_plt_CLEAN, y_plt_grid=y_plt_CLEAN, RA_focus_rad=sky_ra, DEC_focus_rad=sky_dec, x_ref=x_ks, y_ref=y_ks, amplitude_ref=alpha_ks, x_recon=xk_recon, y_recon=yk_recon, amplitude_recon=alpha_k_recon, cmap=parameter_set['cmap'], background_img=img_dirty, marker_scale=parameter_set['marker_scale'], save_fig=save_fig, file_name=file_name + '_bg_img_dirty_updateG', label_ref_sol='ground truth', label_recon='reconstruction', file_format=fig_format, dpi=parameter_set['dpi'], close_fig=False, has_title=False) # back ground image: CLEAN image planar_plot_diracs_J2000(x_plt_grid=x_plt_CLEAN, y_plt_grid=y_plt_CLEAN, RA_focus_rad=sky_ra, DEC_focus_rad=sky_dec,
yk_recon = intermidiate_result['yk_recon'] if script_purpose != 'plotting': for stages in range(stage0, max_stage): # estimated number of Diracs for the PARTIAL reconstruction K_est_stage = K_est_stage_lst[stages] if stages == 0: file_name = (fig_dir + 'planar_K_{0}_numSta_{1}_locations_stage{2}' ).format(repr(K_est), repr(num_station), stages) for bg_img in bg_img_lst: planar_plot_diracs_J2000( x_plt, y_plt, RA_focus_rad=sky_ra, DEC_focus_rad=sky_dec, background_img=background_img[bg_img], cmap=parameter_set['cmap'], marker_scale=parameter_set['marker_scale'], save_fig=save_fig, file_name=file_name + '_bg_img_' + bg_img.lower(), file_format='png', dpi=parameter_set['dpi'], close_fig=True, title_str=bg_img + ' image') xk_recon, yk_recon, alpha_k_recon = \ planar_recon_2d_dirac_joint_beamforming( visi_noisy, r_antenna_x, r_antenna_y, 2 * np.pi * freq_subbands_hz, light_speed, K=K_est_stage, tau_x=tau_x, tau_y=tau_y, M=M, N=N, tau_inter_x=tau_inter_x, tau_inter_y=tau_inter_y, max_ini=max_ini, num_rotation=1, G_iter=parameter_set['G_iter'], plane_norm_vec=plane_norm_vec, verbose=True, backend=backend, theano_build_G_func=theano_build_G_func, theano_build_amp_func=theano_build_amp_func