Exemple #1
0
        load_from = save_to

        logposterior = lambda aa: model.logposterior_func2(x=x, z=aa)
        print('optimiznig local', samp_i)
        z = optimize_local_expressive_only_sample(logposterior,
                                                  model,
                                                  x,
                                                  save_to=save_to,
                                                  load_from=load_from)

        z = z.view(-1, z_size)
        z = z.data.cpu().numpy()

        # print (z)

        plot_kde(ax, samps=z, xlimits=xlimits, ylimits=ylimits, cmap='Reds')

        # #Plot prob
        # col +=1
        # ax = plt.subplot2grid((rows,cols), (samp_i,col), frameon=False)
        # Ws, logpW, logqW = model.sample_W()  #_ , [1], [1]
        # func = lambda zs: log_bernoulli(model.decode(Ws, Variable(torch.unsqueeze(zs,1))), Variable(torch.unsqueeze(samp,0)))+ Variable(torch.unsqueeze(lognormal4(torch.Tensor(zs), torch.zeros(2), torch.zeros(2)), 1))
        # plot_isocontours2_exp(ax, func, cmap='Greens', legend=legend)
        # if samp_i==0:  ax.annotate('p(z,x|W2)', xytext=(.1, 1.1), xy=(0, 1), textcoords='axes fraction')
        # func = lambda zs: lognormal4(torch.Tensor(zs), torch.zeros(2), torch.zeros(2))
        # plot_isocontours(ax, func, cmap='Blues', alpha=.3)
        # func = lambda zs: lognormal4(torch.Tensor(zs), torch.squeeze(mean.data), torch.squeeze(logvar.data))
        # plot_isocontours(ax, func, cmap='Reds')

        # #Plot prob
        # col +=1
        x = x.view(1,784)

        save_to = this_dir+'/local_params'+str(samp_i)+'.pt'
        load_from = save_to

        logposterior = lambda aa: model.logposterior_func2(x=x,z=aa)
        print ('optimiznig local', samp_i)
        z = optimize_local_expressive_only_sample(logposterior, model, x, save_to=save_to, load_from=load_from)

        z = z.view(-1,z_size)
        z = z.data.cpu().numpy()

        # print (z)


        plot_kde(ax,samps=z,xlimits=xlimits,ylimits=ylimits,cmap='Reds')









        # #Plot prob
        # col +=1
        # ax = plt.subplot2grid((rows,cols), (samp_i,col), frameon=False)
        # Ws, logpW, logqW = model.sample_W()  #_ , [1], [1]   
        # func = lambda zs: log_bernoulli(model.decode(Ws, Variable(torch.unsqueeze(zs,1))), Variable(torch.unsqueeze(samp,0)))+ Variable(torch.unsqueeze(lognormal4(torch.Tensor(zs), torch.zeros(2), torch.zeros(2)), 1))
        # plot_isocontours2_exp(ax, func, cmap='Greens', legend=legend)
Exemple #3
0
        print '\nPosterior', p_i, posterior_names[p_i]

        posterior = ttp.posterior_class(posteriors[p_i])
        ax = plt.subplot2grid((rows,columns), (p_i,0), frameon=False)#, colspan=3)
        plot_isocontours(ax, posterior.run_log_post, cmap='Blues')
        if p_i == 0: ax.annotate('Posterior', xytext=(.3, 1.1), xy=(0, 1), textcoords='axes fraction')

        for q_i in range(len(models)):

            print model_names[q_i]
            ax = plt.subplot2grid((rows,columns), (p_i,q_i+1), frameon=False)#, colspan=3)
            model = models[q_i](posteriors[p_i])
            # model.train(10000, save_to=home+'/Documents/tmp/vars.ckpt')
            model.train(9999000, save_to='')
            samps = model.sample(1000)
            plot_kde(ax, samps, cmap='Reds')
            plot_isocontours(ax, posterior.run_log_post, cmap='Blues', alpha=alpha)
            if p_i == 0: ax.annotate(model_names[q_i], xytext=(.38, 1.1), xy=(0, 1), textcoords='axes fraction')

    # plt.show()
    plt.savefig(home+'/Documents/tmp/plots.png')
    print 'saved'








            load_from = save_to

            logposterior = lambda aa: model.logposterior_func2(x=x, z=aa)
            print('optimiznig local flow', samp_i)
            # z = optimize_local_expressive_only_sample(logposterior, model, x, save_to=save_to, load_from=load_from)

            # z = optimize_local_expressive_only_sample_2(logposterior, model, x)

            z = optimize_local_expressive_only_sample(logposterior, model, x)

            z = z.view(-1, z_size)
            z = z.data.cpu().numpy()
            # plot_kde(ax,samps=z,xlimits=xlimits,ylimits=ylimits,cmap='Reds')
            plot_kde(ax,
                     samps=z,
                     xlimits=xlimits,
                     ylimits=ylimits,
                     cmap='Blues')

            # flow = optimize_local_flow1(logposterior, model, x)
            # func = lambda zs: flow.logprob(torch.Tensor(zs).cuda())
            # _ = plot_isocontours_new(ax, func, cmap='Blues',xlimits=xlimits,ylimits=ylimits, legend=False, levels=[])

        # #Plot prob
        # col +=1
        # ax = plt.subplot2grid((rows,cols), (samp_i,col), frameon=False)
        # Ws, logpW, logqW = model.sample_W()  #_ , [1], [1]
        # func = lambda zs: log_bernoulli(model.decode(Ws, Variable(torch.unsqueeze(zs,1))), Variable(torch.unsqueeze(samp,0)))+ Variable(torch.unsqueeze(lognormal4(torch.Tensor(zs), torch.zeros(2), torch.zeros(2)), 1))
        # plot_isocontours2_exp(ax, func, cmap='Greens', legend=legend)
        # if samp_i==0:  ax.annotate('p(z,x|W2)', xytext=(.1, 1.1), xy=(0, 1), textcoords='axes fraction')
        # func = lambda zs: lognormal4(torch.Tensor(zs), torch.zeros(2), torch.zeros(2))
                load_from = home + '/Documents/tmp/' + posterior_names[
                    p_i] + '_' + model_names[q_i] + '.ckpt'
            else:
                load_from = ''

            print model_names[q_i]
            ax = plt.subplot2grid((rows, columns), (q_i + 1, p_i + 1),
                                  frameon=False)  #, colspan=3)
            model = models[q_i](posteriors[p_i])

            if train_:
                model.train(100000, save_to=save_to, load_from=load_from)

            model.load_params(load_from)
            samps = model.sample(100)
            plot_kde(ax, samps, cmap='Blues')
            plot_isocontours(ax,
                             posterior.run_log_post,
                             cmap='Greys',
                             alpha=alpha)
            # if p_i == 0: ax.annotate(model_names[q_i], xytext=(.38, 1.1), xy=(0, 1), textcoords='axes fraction')

    # plt.show()
    plt.savefig(home + '/Documents/tmp/plots.png')
    print 'saved'
    plt.savefig(home + '/Documents/tmp/plots.eps')
    print 'saved'
    plt.savefig(home + '/Documents/tmp/plots.pdf')
    print 'saved'

# if __name__ == '__main__':