def TEST_figure2(imgBGR, kpts, desc, sel, fnum=2): #df2.imshow(wpatch, fnum=2) sift = desc[sel] viz_kwargs = dict(ell=True, eig=False, rect=True, ori_color=df2.DEEP_PINK, ell_alpha=1, fnum=fnum, pnum=(2, 1, 1)) show_keypoints(imgBGR, kpts, sifts=None, sel_fx=sel, ori=False, **viz_kwargs) _annotate_kpts(kpts, sel, ori=True, **viz_kwargs) draw_feat_row(imgBGR, sel, kpts[sel], sift, fnum=fnum, nRows=2, nCols=3, px=3)
def _select_ith_kpt(self, fx): print('[interact] viewing ith=%r keypoint' % fx) # Get the fx-th keypiont kp, sift = self.kpts[fx], self.vecs[fx] # Draw the image with keypoint fx highlighted self.plot(self.fnum, (2, 1, 1), sel_fx=fx) # Draw the selected feature nRows, nCols, px = (2, 3, 3) draw_feat_row(self.chip, fx, kp, sift, self.fnum, nRows, nCols, px, None)
def _select_ith_kpt(fx): print('[interact] viewing ith=%r keypoint' % fx) # Get the fx-th keypiont kp, sift = kpts[fx], vecs[fx] # Draw the image with keypoint fx highlighted _viz_keypoints(fnum, (2, 1, 1), sel_fx=fx, **kwargs) # MAYBE: remove kwargs # Draw the selected feature nRows, nCols, px = (2, 3, 3) draw_feat_row(chip, fx, kp, sift, fnum, nRows, nCols, px, None)
def _select_fxth_kpt(fx): # Get the fx-th keypiont chip = ibs.get_annot_chips(aid, config2_=config2_) kp = ibs.get_annot_kpts(aid, config2_=config2_)[fx] sift = ibs.get_annot_vecs(aid, config2_=config2_)[fx] # Draw chip + keypoints + highlighted plots _chip_view(pnum=(2, 1, 1), sel_fx=fx) #ishow_chip(ibs, aid, fnum=None, fx=fx, config2_=config2_, **kwargs) # Draw the selected feature plots nRows, nCols, px = (2, 3, 3) draw_feat_row(chip, fx, kp, sift, fnum, nRows, nCols, px, None)
def _select_ith_match(mx, qaid, aid): #---------------------- # Get info for the _select_ith_match plot annote_ptr[0] = 1 # Get the mx-th feature match aid1, aid2 = qaid, aid fx1, fx2 = fm[mx] fscore2 = qres.aid2_fs[aid2][mx] fk2 = qres.aid2_fk[aid2][mx] kpts1, kpts2 = ibs.get_annot_kpts([aid1, aid2]) desc1, desc2 = ibs.get_annot_desc([aid1, aid2]) kp1, kp2 = kpts1[fx1], kpts2[fx2] sift1, sift2 = desc1[fx1], desc2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) last_state.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, sift1, fx1, aid1, info1), (rchip2, kp2, sift2, fx2, aid2, info2)] # Normalizng Keypoint if hasattr(qres, 'filt2_meta') and 'lnbnn' in qres.filt2_meta: qfx2_norm = qres.filt2_meta['lnbnn'] # Normalizing chip and feature (aid3, fx3, normk) = qfx2_norm[fx1] rchip3 = ibs.get_annot_chips(aid3) kp3 = ibs.get_annot_kpts(aid3)[fx3] sift3 = ibs.get_annot_desc(aid3)[fx3] info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) else: print('WARNING: meta doesnt exist') #---------------------- # Draw the _select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) _chipmatch_view(pnum1, vert=False, ell_alpha=.4, ell_linewidth=1.8, colors=df2.BLUE, sel_fm=sel_fm, **kwargs) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: fnum2 = fnum + len(viz.FNUMS) fig2 = df2.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = draw_feat_row(rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', _click_matches_click) df2.set_figtitle(figtitle + vh.get_vsstr(qaid, aid))
def select_ith_match(self, mx): """ Selects the ith match and visualizes and prints information concerning features weights, keypoint details, and sift descriptions """ import plottool as pt from plottool import viz_featrow from plottool import interact_helpers as ih # <CLOSURE VARS> fnum = self.fnum same_fig = self.same_fig rchip1 = self.rchip1 rchip2 = self.rchip2 # </CLOSURE VARS> self.mx = mx print("+--- SELECT --- ") print("... selecting mx-th=%r feature match" % mx) fsv = self.fsv fs = self.fs print("score stats:") print(ut.get_stats_str(fsv, axis=0, newlines=True)) print("fsv[mx] = %r" % (fsv[mx],)) print("fs[mx] = %r" % (fs[mx],)) # ---------------------- # Get info for the select_ith_match plot self.mode = 1 # Get the mx-th feature match fx1, fx2 = self.fm[mx] # Older info fscore2 = self.fs[mx] fk2 = None kp1, kp2 = self.kpts1[fx1], self.kpts2[fx2] vecs1, vecs2 = self.vecs1[fx1], self.vecs2[fx2] info1 = "\nquery" info2 = "\nk=%r fscore=%r" % (fk2, fscore2) # self.last_fx = fx1 self.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, vecs1, fx1, "aid1", info1), (rchip2, kp2, vecs2, fx2, "aid2", info2)] # Normalizng Keypoint # if hasattr(cm, 'filt2_meta') and 'lnbnn' in cm.filt2_meta: # qfx2_norm = cm.filt2_meta['lnbnn'] # # Normalizing chip and feature # (aid3, fx3, normk) = qfx2_norm[fx1] # rchip3 = ibs.get_annot_chips(aid3) # kp3 = ibs.get_annot_kpts(aid3)[fx3] # sift3 = ibs.get_annot_vecs(aid3)[fx3] # info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) # extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) # else: # pass # #print('WARNING: meta doesnt exist') # ---------------------- # Draw the select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) vert = self.vert if self.vert is not None else False self.chipmatch_view(pnum=pnum1, ell_alpha=0.4, ell_linewidth=1.8, colors=pt.BLUE, sel_fm=sel_fm, vert=vert) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: # fnum2 = fnum + len(viz.FNUMS) fnum2 = self.fnum2 fig2 = pt.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = viz_featrow.draw_feat_row( rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info ) prevsift = sift if not same_fig: ih.connect_callback(fig2, "button_press_event", self.on_click)
def select_ith_match(self, mx): """ Selects the ith match and visualizes and prints information concerning features weights, keypoint details, and sift descriptions Args: mx (int) - the ith match to visualize qaid (int) - query annotation id aid (int) - database annotation id CommandLine: python -m ibeis.viz.interact.interact_matches --test-select_ith_match --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_matches import * # NOQA >>> self = testdata_match_interact(mx=1) >>> pt.show_if_requested() """ ibs = self.ibs qaid = self.qaid aid = self.daid fnum = self.fnum figtitle = self.figtitle rchip1 = self.rchip1 rchip2 = self.rchip2 aid = self.daid same_fig = self.same_fig self.mx = mx print('+--- SELECT --- ') print('qaid=%r, daid=%r' % (qaid, aid)) print('... selecting mx-th=%r feature match' % mx) if False: print('score stats:') print(ut.get_stats_str(self.fsv, axis=0, newlines=True)) print('fsv[mx] = %r' % (self.fsv[mx], )) print('fs[mx] = %r' % (self.fs[mx], )) """ # test feature weights of actual chips fx1, fx2 = fm[mx] daid = aid ibs.get_annot_fgweights([daid])[0][fx2] ibs.get_annot_fgweights([qaid])[0][fx1] """ #---------------------- # Get info for the select_ith_match plot self.mode = 1 # Get the mx-th feature match fx1, fx2 = self.fm[mx] fscore2 = self.fs[mx] fk2 = self.fk[mx] kpts1 = ibs.get_annot_kpts([self.qaid], config2_=self.query_config2_)[0] kpts2 = ibs.get_annot_kpts([self.daid], config2_=self.data_config2_)[0] desc1 = ibs.get_annot_vecs([self.qaid], config2_=self.query_config2_)[0] desc2 = ibs.get_annot_vecs([self.daid], config2_=self.data_config2_)[0] kp1, kp2 = kpts1[fx1], kpts2[fx2] sift1, sift2 = desc1[fx1], desc2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) #last_state.last_fx = fx1 self.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, sift1, fx1, self.qaid, info1), (rchip2, kp2, sift2, fx2, self.daid, info2)] # Normalizng Keypoint #if hasattr(cm, 'filt2_meta') and 'lnbnn' in cm.filt2_meta: # qfx2_norm = cm.filt2_meta['lnbnn'] # # Normalizing chip and feature # (aid3, fx3, normk) = qfx2_norm[fx1] # rchip3 = ibs.get_annot_chips(aid3) # kp3 = ibs.get_annot_kpts(aid3)[fx3] # sift3 = ibs.get_annot_vecs(aid3)[fx3] # info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) # extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) #else: # pass # print('WARNING: meta doesnt exist') #---------------------- # Draw the select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) vert = self.vert if self.vert is not None else False self.chipmatch_view(pnum1, ell_alpha=.4, ell_linewidth=1.8, colors=df2.BLUE, sel_fm=sel_fm, vert=vert) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: #fnum2 = fnum + len(viz.FNUMS) fnum2 = self.fnum2 fig2 = df2.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = viz_featrow.draw_feat_row(rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', self.on_click) df2.set_figtitle(figtitle + vh.get_vsstr(qaid, aid))
def show_nearest_descriptors(ibs, qaid, qfx, fnum=None, stride=5, qreq_=None, **kwargs): r""" Args: ibs (ibeis.IBEISController): image analysis api qaid (int): query annotation id qfx (int): query feature index fnum (int): figure number stride (int): consecutive_distance_compare (bool): CommandLine: # Find a good match to inspect python -m ibeis.viz.interact.interact_matches --test-testdata_match_interact --show --db PZ_MTEST --qaid 3 # Now inspect it python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show --db PZ_MTEST --qaid 3 --qfx 879 python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --db PZ_MTEST --qaid 3 --qfx 879 --diskshow --save foo.png --dpi=256 SeeAlso: plottool.viz_featrow ~/code/plottool/plottool/viz_featrow.py Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_nearest_descriptors import * # NOQA >>> import ibeis >>> # build test data >>> qreq_ = ibeis.testdata_qreq_() >>> ibs = ibeis.opendb('PZ_MTEST') >>> qaid = qreq_.qaids[0] >>> qfx = ut.get_argval('--qfx', type_=int, default=879) >>> fnum = None >>> stride = 5 >>> # execute function >>> skip = False >>> result = show_nearest_descriptors(ibs, qaid, qfx, fnum, stride, >>> draw_chip=True, >>> draw_warped=True, >>> draw_unwarped=False, >>> draw_desc=False, qreq_=qreq_) >>> # verify results >>> print(result) >>> pt.show_if_requested() """ consecutive_distance_compare = True draw_chip = kwargs.get('draw_chip', False) draw_desc = kwargs.get('draw_desc', True) draw_warped = kwargs.get('draw_warped', True) draw_unwarped = kwargs.get('draw_unwarped', True) #skip = kwargs.get('skip', True) # Plots the nearest neighbors of a given feature (qaid, qfx) if fnum is None: fnum = df2.next_fnum() try: # Flann NN query (qfx2_daid, qfx2_dfx, qfx2_dist, K, Knorm) = get_annotfeat_nn_index(ibs, qaid, qfx, qreq_=qreq_) # Adds metadata to a feature match def get_extract_tuple(aid, fx, k=-1): rchip = ibs.get_annot_chips(aid) kp = ibs.get_annot_kpts(aid)[fx] sift = ibs.get_annot_vecs(aid)[fx] if not ut.get_argflag('--texknormplot'): aidstr = vh.get_aidstrs(aid) nidstr = vh.get_nidstrs(ibs.get_annot_nids(aid)) id_str = ' ' + aidstr + ' ' + nidstr + ' fx=%r' % (fx,) else: id_str = nidstr = aidstr = '' info = '' if k == -1: if pt.is_texmode(): info = '\\vspace{1cm}' info += 'Query $\\mathbf{d}_i$' info += '\n\\_' info += '\n\\_' else: if len(id_str) > '': info = 'Query: %s' % (id_str,) else: info = 'Query' type_ = 'Query' elif k < K: type_ = 'Match' if ut.get_argflag('--texknormplot') and pt.is_texmode(): #info = 'Match:\n$k=%r$, $\\frac{||\\mathbf{d}_i - \\mathbf{d}_j||}{Z}=%.3f$' % (k, qfx2_dist[0, k]) info = '\\vspace{1cm}' info += 'Match: $\\mathbf{d}_{j_%r}$\n$\\textrm{dist}=%.3f$' % (k, qfx2_dist[0, k]) info += '\n$s_{\\tt{LNBNN}}=%.3f$' % (qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k]) else: info = 'Match:%s\nk=%r, dist=%.3f' % (id_str, k, qfx2_dist[0, k]) info += '\nLNBNN=%.3f' % (qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k]) elif k < Knorm + K: type_ = 'Norm' if ut.get_argflag('--texknormplot') and pt.is_texmode(): #info = 'Norm: $j_%r$\ndist=%.3f' % (id_str, k, qfx2_dist[0, k]) info = '\\vspace{1cm}' info += 'Norm: $j_%r$\n$\\textrm{dist}=%.3f$' % (k, qfx2_dist[0, k]) info += '\n\\_' else: info = 'Norm: %s\n$k=%r$, dist=$%.3f$' % (id_str, k, qfx2_dist[0, k]) else: raise Exception('[viz] problem k=%r') return (rchip, kp, sift, fx, aid, info, type_) extracted_list = [] # Remember the query sift feature extracted_list.append(get_extract_tuple(qaid, qfx, -1)) origsift = extracted_list[0][2] skipped = 0 for k in range(K + Knorm): #if qfx2_daid[0, k] == qaid and qfx2_dfx[0, k] == qfx: if qfx2_daid[0, k] == qaid: skipped += 1 continue tup = get_extract_tuple(qfx2_daid[0, k], qfx2_dfx[0, k], k) extracted_list.append(tup) # Draw the _select_ith_match plot nRows = len(extracted_list) if stride is None: stride = nRows # Draw selected feature matches prevsift = None px = 0 # plot offset px_shift = 0 # plot stride shift nExtracted = len(extracted_list) featrow_kw = dict( draw_chip=draw_chip, draw_desc=draw_desc, draw_warped=draw_warped, draw_unwarped=draw_unwarped, ) if ut.get_argflag('--texknormplot'): featrow_kw['ell_color'] = pt.ORANGE pass for listx, tup in enumerate(extracted_list): (rchip, kp, sift, fx, aid, info, type_) = tup if listx % stride == 0: # Create a temporary nRows and fnum in case we are splitting # up nearest neighbors into separate figures with stride _fnum = fnum + listx _nRows = min(nExtracted - listx, stride) px_shift = px df2.figure(fnum=_fnum, docla=True, doclf=True) px_ = px - px_shift px = draw_feat_row(rchip, fx, kp, sift, _fnum, _nRows, px=px_, prevsift=prevsift, origsift=origsift, aid=aid, info=info, type_=type_, **featrow_kw) px += px_shift if prevsift is None or consecutive_distance_compare: prevsift = sift df2.adjust_subplots_safe(hspace=.85, wspace=0, top=.95, bottom=.087, left=.05, right=.95) except Exception as ex: print('[viz] Error in show nearest descriptors') print(ex) raise
def show_nearest_descriptors(ibs, qaid, qfx, fnum=None, stride=5, consecutive_distance_compare=False): # Plots the nearest neighbors of a given feature (qaid, qfx) if fnum is None: fnum = df2.next_fnum() try: # Flann NN query (qfx2_aid, qfx2_fx, qfx2_dist, K, Knorm) = query_helpers.get_annotfeat_nn_index(ibs, qaid, qfx) # Adds metadata to a feature match def get_extract_tuple(aid, fx, k=-1): rchip = ibs.get_annot_chips(aid) kp = ibs.get_annot_kpts(aid)[fx] sift = ibs.get_annot_desc(aid)[fx] if k == -1: info = '\nquery %s, fx=%r' % (vh.get_aidstrs(aid), fx) type_ = 'query' elif k < K: type_ = 'match' info = '\nmatch %s, fx=%r k=%r, dist=%r' % (vh.get_aidstrs(aid), fx, k, qfx2_dist[0, k]) elif k < Knorm + K: type_ = 'norm' info = '\nnorm %s, fx=%r k=%r, dist=%r' % (vh.get_aidstrs(aid), fx, k, qfx2_dist[0, k]) else: raise Exception('[viz] problem k=%r') return (rchip, kp, sift, fx, aid, info, type_) extracted_list = [] extracted_list.append(get_extract_tuple(qaid, qfx, -1)) skipped = 0 for k in xrange(K + Knorm): if qfx2_aid[0, k] == qaid and qfx2_fx[0, k] == qfx: skipped += 1 continue tup = get_extract_tuple(qfx2_aid[0, k], qfx2_fx[0, k], k) extracted_list.append(tup) # Draw the _select_ith_match plot nRows, nCols = len(extracted_list), 3 if stride is None: stride = nRows # Draw selected feature matches prevsift = None px = 0 # plot offset px_shift = 0 # plot stride shift nExtracted = len(extracted_list) for listx, tup in enumerate(extracted_list): (rchip, kp, sift, fx, aid, info, type_) = tup if listx % stride == 0: # Create a temporary nRows and fnum in case we are splitting # up nearest neighbors into separate figures with stride _fnum = fnum + listx _nRows = min(nExtracted - listx, stride) px_shift = px df2.figure(fnum=_fnum, docla=True, doclf=True) printDBG('[viz] ' + info.replace('\n', '')) px_ = px - px_shift px = draw_feat_row(rchip, fx, kp, sift, _fnum, _nRows, nCols, px_, prevsift=prevsift, aid=aid, info=info, type_=type_) + px_shift if prevsift is None or consecutive_distance_compare: prevsift = sift df2.adjust_subplots_safe(hspace=1) except Exception as ex: print('[viz] Error in show nearest descriptors') print(ex) raise
def select_ith_match(self, mx): """ Selects the ith match and visualizes and prints information concerning features weights, keypoint details, and sift descriptions Args: mx (int) - the ith match to visualize qaid (int) - query annotation id aid (int) - database annotation id CommandLine: python -m ibeis.viz.interact.interact_matches --test-select_ith_match --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.interact.interact_matches import * # NOQA >>> self = testdata_match_interact(mx=1) >>> pt.show_if_requested() """ ibs = self.ibs qaid = self.qaid aid = self.daid fnum = self.fnum figtitle = self.figtitle rchip1 = self.rchip1 rchip2 = self.rchip2 aid = self.daid same_fig = self.same_fig self.mx = mx print('+--- SELECT --- ') print('qaid=%r, daid=%r' % (qaid, aid)) print('... selecting mx-th=%r feature match' % mx) if False: print('score stats:') print(ut.get_stats_str(self.fsv, axis=0, newlines=True)) print('fsv[mx] = %r' % (self.fsv[mx],)) print('fs[mx] = %r' % (self.fs[mx],)) """ # test feature weights of actual chips fx1, fx2 = fm[mx] daid = aid ibs.get_annot_fgweights([daid])[0][fx2] ibs.get_annot_fgweights([qaid])[0][fx1] """ #---------------------- # Get info for the select_ith_match plot self.mode = 1 # Get the mx-th feature match fx1, fx2 = self.fm[mx] fscore2 = self.fs[mx] fk2 = self.fk[mx] kpts1 = ibs.get_annot_kpts([self.qaid], config2_=self.query_config2_)[0] kpts2 = ibs.get_annot_kpts([self.daid], config2_=self.data_config2_)[0] desc1 = ibs.get_annot_vecs([self.qaid], config2_=self.query_config2_)[0] desc2 = ibs.get_annot_vecs([self.daid], config2_=self.data_config2_)[0] kp1, kp2 = kpts1[fx1], kpts2[fx2] sift1, sift2 = desc1[fx1], desc2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) #last_state.last_fx = fx1 self.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, sift1, fx1, self.qaid, info1), (rchip2, kp2, sift2, fx2, self.daid, info2)] # Normalizng Keypoint #if hasattr(cm, 'filt2_meta') and 'lnbnn' in cm.filt2_meta: # qfx2_norm = cm.filt2_meta['lnbnn'] # # Normalizing chip and feature # (aid3, fx3, normk) = qfx2_norm[fx1] # rchip3 = ibs.get_annot_chips(aid3) # kp3 = ibs.get_annot_kpts(aid3)[fx3] # sift3 = ibs.get_annot_vecs(aid3)[fx3] # info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) # extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) #else: # pass # print('WARNING: meta doesnt exist') #---------------------- # Draw the select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) vert = self.vert if self.vert is not None else False self.chipmatch_view(pnum1, ell_alpha=.4, ell_linewidth=1.8, colors=df2.BLUE, sel_fm=sel_fm, vert=vert) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: #fnum2 = fnum + len(viz.FNUMS) fnum2 = self.fnum2 fig2 = df2.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = viz_featrow.draw_feat_row(rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', self.on_click) df2.set_figtitle(figtitle + vh.get_vsstr(qaid, aid))
def select_ith_match(self, mx): """ Selects the ith match and visualizes and prints information concerning features weights, keypoint details, and sift descriptions """ import plottool as pt from plottool import viz_featrow from plottool import interact_helpers as ih # <CLOSURE VARS> fnum = self.fnum same_fig = self.same_fig rchip1 = self.rchip1 rchip2 = self.rchip2 # </CLOSURE VARS> self.mx = mx print('+--- SELECT --- ') print('... selecting mx-th=%r feature match' % mx) fsv = self.fsv fs = self.fs print('score stats:') print(ut.get_stats_str(fsv, axis=0, newlines=True)) print('fsv[mx] = %r' % (fsv[mx],)) print('fs[mx] = %r' % (fs[mx],)) #---------------------- # Get info for the select_ith_match plot self.mode = 1 # Get the mx-th feature match fx1, fx2 = self.fm[mx] # Older info fscore2 = self.fs[mx] fk2 = None kp1, kp2 = self.kpts1[fx1], self.kpts2[fx2] vecs1, vecs2 = self.vecs1[fx1], self.vecs2[fx2] info1 = '\nquery' info2 = '\nk=%r fscore=%r' % (fk2, fscore2) #self.last_fx = fx1 self.last_fx = fx1 # Extracted keypoints to draw extracted_list = [(rchip1, kp1, vecs1, fx1, 'aid1', info1), (rchip2, kp2, vecs2, fx2, 'aid2', info2)] # Normalizng Keypoint #if hasattr(cm, 'filt2_meta') and 'lnbnn' in cm.filt2_meta: # qfx2_norm = cm.filt2_meta['lnbnn'] # # Normalizing chip and feature # (aid3, fx3, normk) = qfx2_norm[fx1] # rchip3 = ibs.get_annot_chips(aid3) # kp3 = ibs.get_annot_kpts(aid3)[fx3] # sift3 = ibs.get_annot_vecs(aid3)[fx3] # info3 = '\nnorm %s k=%r' % (vh.get_aidstrs(aid3), normk) # extracted_list.append((rchip3, kp3, sift3, fx3, aid3, info3)) #else: # pass # #print('WARNING: meta doesnt exist') #---------------------- # Draw the select_ith_match plot nRows, nCols = len(extracted_list) + same_fig, 3 # Draw matching chips and features sel_fm = np.array([(fx1, fx2)]) pnum1 = (nRows, 1, 1) if same_fig else (1, 1, 1) vert = self.vert if self.vert is not None else False self.chipmatch_view(pnum=pnum1, ell_alpha=.4, ell_linewidth=1.8, colors=pt.BLUE, sel_fm=sel_fm, vert=vert) # Draw selected feature matches px = nCols * same_fig # plot offset prevsift = None if not same_fig: #fnum2 = fnum + len(viz.FNUMS) fnum2 = self.fnum2 fig2 = pt.figure(fnum=fnum2, docla=True, doclf=True) else: fnum2 = fnum for (rchip, kp, sift, fx, aid, info) in extracted_list: px = viz_featrow.draw_feat_row( rchip, fx, kp, sift, fnum2, nRows, nCols, px, prevsift=prevsift, aid=aid, info=info) prevsift = sift if not same_fig: ih.connect_callback(fig2, 'button_press_event', self.on_click)
def show_nearest_descriptors(ibs, qaid, qfx, fnum=None, stride=5, qreq_=None, **kwargs): r""" Args: ibs (ibeis.IBEISController): image analysis api qaid (int): query annotation id qfx (int): query feature index fnum (int): figure number stride (int): consecutive_distance_compare (bool): CommandLine: # Find a good match to inspect python -m ibeis.viz.interact.interact_matches --test-testdata_match_interact --show --db PZ_MTEST --qaid 3 # Now inspect it python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show --db PZ_MTEST --qaid 3 --qfx 879 python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --show python -m ibeis.viz.viz_nearest_descriptors --test-show_nearest_descriptors --db PZ_MTEST --qaid 3 --qfx 879 --diskshow --save foo.png --dpi=256 SeeAlso: plottool.viz_featrow ~/code/plottool/plottool/viz_featrow.py Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_nearest_descriptors import * # NOQA >>> import ibeis >>> # build test data >>> qreq_ = ibeis.testdata_qreq_() >>> ibs = ibeis.opendb('PZ_MTEST') >>> qaid = qreq_.qaids[0] >>> qfx = ut.get_argval('--qfx', type_=None, default=879) >>> fnum = None >>> stride = 5 >>> # execute function >>> skip = False >>> result = show_nearest_descriptors(ibs, qaid, qfx, fnum, stride, >>> draw_chip=True, >>> draw_warped=True, >>> draw_unwarped=False, >>> draw_desc=False, qreq_=qreq_) >>> # verify results >>> print(result) >>> pt.show_if_requested() """ import plottool as pt # NOQA consecutive_distance_compare = True draw_chip = kwargs.get('draw_chip', False) draw_desc = kwargs.get('draw_desc', True) draw_warped = kwargs.get('draw_warped', True) draw_unwarped = kwargs.get('draw_unwarped', True) #skip = kwargs.get('skip', True) # Plots the nearest neighbors of a given feature (qaid, qfx) if fnum is None: fnum = df2.next_fnum() try: # Flann NN query (qfx, qfx2_daid, qfx2_dfx, qfx2_dist, K, Knorm) = get_annotfeat_nn_index(ibs, qaid, qfx, qreq_=qreq_) # Adds metadata to a feature match def get_extract_tuple(aid, fx, k=-1): rchip = ibs.get_annot_chips(aid) kp = ibs.get_annot_kpts(aid)[fx] sift = ibs.get_annot_vecs(aid)[fx] if not ut.get_argflag('--texknormplot'): aidstr = vh.get_aidstrs(aid) nidstr = vh.get_nidstrs(ibs.get_annot_nids(aid)) id_str = ' ' + aidstr + ' ' + nidstr + ' fx=%r' % (fx, ) else: id_str = nidstr = aidstr = '' info = '' if k == -1: if pt.is_texmode(): info = '\\vspace{1cm}' info += 'Query $\\mathbf{d}_i$' info += '\n\\_' info += '\n\\_' else: if len(id_str) > '': info = 'Query: %s' % (id_str, ) else: info = 'Query' type_ = 'Query' elif k < K: type_ = 'Match' if ut.get_argflag('--texknormplot') and pt.is_texmode(): #info = 'Match:\n$k=%r$, $\\frac{||\\mathbf{d}_i - \\mathbf{d}_j||}{Z}=%.3f$' % (k, qfx2_dist[0, k]) info = '\\vspace{1cm}' info += 'Match: $\\mathbf{d}_{j_%r}$\n$\\textrm{dist}=%.3f$' % ( k, qfx2_dist[0, k]) info += '\n$s_{\\tt{LNBNN}}=%.3f$' % ( qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k]) else: info = 'Match:%s\nk=%r, dist=%.3f' % (id_str, k, qfx2_dist[0, k]) info += '\nLNBNN=%.3f' % (qfx2_dist[0, K + Knorm - 1] - qfx2_dist[0, k]) elif k < Knorm + K: type_ = 'Norm' if ut.get_argflag('--texknormplot') and pt.is_texmode(): #info = 'Norm: $j_%r$\ndist=%.3f' % (id_str, k, qfx2_dist[0, k]) info = '\\vspace{1cm}' info += 'Norm: $j_%r$\n$\\textrm{dist}=%.3f$' % ( k, qfx2_dist[0, k]) info += '\n\\_' else: info = 'Norm: %s\n$k=%r$, dist=$%.3f$' % (id_str, k, qfx2_dist[0, k]) else: raise Exception('[viz] problem k=%r') return (rchip, kp, sift, fx, aid, info, type_) extracted_list = [] # Remember the query sift feature extracted_list.append(get_extract_tuple(qaid, qfx, -1)) origsift = extracted_list[0][2] skipped = 0 for k in range(K + Knorm): #if qfx2_daid[0, k] == qaid and qfx2_dfx[0, k] == qfx: if qfx2_daid[0, k] == qaid: skipped += 1 continue tup = get_extract_tuple(qfx2_daid[0, k], qfx2_dfx[0, k], k) extracted_list.append(tup) # Draw the _select_ith_match plot nRows = len(extracted_list) if stride is None: stride = nRows # Draw selected feature matches prevsift = None px = 0 # plot offset px_shift = 0 # plot stride shift nExtracted = len(extracted_list) featrow_kw = dict( draw_chip=draw_chip, draw_desc=draw_desc, draw_warped=draw_warped, draw_unwarped=draw_unwarped, ) if ut.get_argflag('--texknormplot'): featrow_kw['ell_color'] = pt.ORANGE pass for listx, tup in enumerate(extracted_list): (rchip, kp, sift, fx, aid, info, type_) = tup if listx % stride == 0: # Create a temporary nRows and fnum in case we are splitting # up nearest neighbors into separate figures with stride _fnum = fnum + listx _nRows = min(nExtracted - listx, stride) px_shift = px df2.figure(fnum=_fnum, docla=True, doclf=True) px_ = px - px_shift px = draw_feat_row(rchip, fx, kp, sift, _fnum, _nRows, px=px_, prevsift=prevsift, origsift=origsift, aid=aid, info=info, type_=type_, **featrow_kw) px += px_shift if prevsift is None or consecutive_distance_compare: prevsift = sift df2.adjust_subplots_safe(hspace=.85, wspace=0, top=.95, bottom=.087, left=.05, right=.95) except Exception as ex: print('[viz] Error in show nearest descriptors') print(ex) raise