Exemple #1
0
    def get_batch(self, queue):
        """ Get items for inputting into the masker from the queue in batches

        Items are returned from the ``queue`` in batches of
        :attr:`~plugins.extract._base.Extractor.batchsize`

        Items are received as :class:`~plugins.extract.pipeline.ExtractMedia` objects and converted
        to ``dict`` for internal processing.

        To ensure consistent batch sizes for masker the items are split into separate items for
        each :class:`~lib.faces_detect.DetectedFace` object.

        Remember to put ``'EOF'`` to the out queue after processing
        the final batch

        Outputs items in the following format. All lists are of length
        :attr:`~plugins.extract._base.Extractor.batchsize`:

        >>> {'filename': [<filenames of source frames>],
        >>>  'detected_faces': [[<lib.faces_detect.DetectedFace objects]]}

        Parameters
        ----------
        queue : queue.Queue()
            The ``queue`` that the plugin will be fed from.

        Returns
        -------
        exhausted, bool
            ``True`` if queue is exhausted, ``False`` if not
        batch, dict
            A dictionary of lists of :attr:`~plugins.extract._base.Extractor.batchsize`:
        """
        exhausted = False
        batch = dict()
        idx = 0
        while idx < self.batchsize:
            item = self._collect_item(queue)
            if item == "EOF":
                logger.trace("EOF received")
                exhausted = True
                break
            # Put frames with no faces into the out queue to keep TQDM consistent
            if not item.detected_faces:
                self._queues["out"].put(item)
                continue
            for f_idx, face in enumerate(item.detected_faces):
                face.load_feed_face(item.get_image_copy(self.color_format),
                                    size=self.input_size,
                                    coverage_ratio=1.0,
                                    dtype="float32",
                                    is_aligned_face=self._image_is_aligned)

                batch.setdefault("detected_faces", []).append(face)
                batch.setdefault("filename", []).append(item.filename)
                idx += 1
                if idx == self.batchsize:
                    frame_faces = len(item.detected_faces)
                    if f_idx + 1 != frame_faces:
                        self._rollover = ExtractMedia(
                            item.filename,
                            item.image,
                            detected_faces=item.detected_faces[f_idx + 1:])
                        logger.trace(
                            "Rolled over %s faces of %s to next batch for '%s'",
                            len(self._rollover.detected_faces), frame_faces,
                            item.filename)
                    break
        if batch:
            logger.trace(
                "Returning batch: %s", {
                    k: v.shape if isinstance(v, np.ndarray) else v
                    for k, v in batch.items()
                })
        else:
            logger.trace(item)
        return exhausted, batch
Exemple #2
0
class Masker(Extractor):  # pylint:disable=abstract-method
    """ Masker plugin _base Object

    All Masker plugins must inherit from this class

    Parameters
    ----------
    git_model_id: int
        The second digit in the github tag that identifies this model. See
        https://github.com/deepfakes-models/faceswap-models for more information
    model_filename: str
        The name of the model file to be loaded
    image_is_aligned: bool, optional
        Indicates that the passed in image is an aligned face rather than a frame.
        Default: ``False``

    Other Parameters
    ----------------
    configfile: str, optional
        Path to a custom configuration ``ini`` file. Default: Use system configfile

    See Also
    --------
    plugins.extract.pipeline : The extraction pipeline for calling plugins
    plugins.extract.align : Aligner plugins
    plugins.extract._base : Parent class for all extraction plugins
    plugins.extract.detect._base : Detector parent class for extraction plugins.
    plugins.extract.align._base : Aligner parent class for extraction plugins.
    """

    def __init__(self, git_model_id=None, model_filename=None, configfile=None,
                 image_is_aligned=False):
        logger.debug("Initializing %s: (configfile: %s, )", self.__class__.__name__, configfile)
        super().__init__(git_model_id,
                         model_filename,
                         configfile=configfile)
        self.input_size = 256  # Override for model specific input_size
        self.coverage_ratio = 1.0  # Override for model specific coverage_ratio

        self._plugin_type = "mask"
        self._image_is_aligned = image_is_aligned
        self._storage_name = self.__module__.split(".")[-1].replace("_", "-")
        self._storage_size = 128  # Size to store masks at. Leave this at default
        self._faces_per_filename = dict()  # Tracking for recompiling face batches
        self._rollover = None  # Items that are rolled over from the previous batch in get_batch
        self._output_faces = []
        logger.debug("Initialized %s", self.__class__.__name__)

    def get_batch(self, queue):
        """ Get items for inputting into the masker from the queue in batches

        Items are returned from the ``queue`` in batches of
        :attr:`~plugins.extract._base.Extractor.batchsize`

        Items are received as :class:`~plugins.extract.pipeline.ExtractMedia` objects and converted
        to ``dict`` for internal processing.

        To ensure consistent batch sizes for masker the items are split into separate items for
        each :class:`~lib.faces_detect.DetectedFace` object.

        Remember to put ``'EOF'`` to the out queue after processing
        the final batch

        Outputs items in the following format. All lists are of length
        :attr:`~plugins.extract._base.Extractor.batchsize`:

        >>> {'filename': [<filenames of source frames>],
        >>>  'detected_faces': [[<lib.faces_detect.DetectedFace objects]]}

        Parameters
        ----------
        queue : queue.Queue()
            The ``queue`` that the plugin will be fed from.

        Returns
        -------
        exhausted, bool
            ``True`` if queue is exhausted, ``False`` if not
        batch, dict
            A dictionary of lists of :attr:`~plugins.extract._base.Extractor.batchsize`:
        """
        exhausted = False
        batch = dict()
        idx = 0
        while idx < self.batchsize:
            item = self._collect_item(queue)
            if item == "EOF":
                logger.trace("EOF received")
                exhausted = True
                break
            # Put frames with no faces into the out queue to keep TQDM consistent
            if not item.detected_faces:
                self._queues["out"].put(item)
                continue
            for f_idx, face in enumerate(item.detected_faces):
                face.load_feed_face(item.get_image_copy(self.colorformat),
                                    size=self.input_size,
                                    coverage_ratio=1.0,
                                    dtype="float32",
                                    is_aligned_face=self._image_is_aligned)

                batch.setdefault("detected_faces", []).append(face)
                batch.setdefault("filename", []).append(item.filename)
                idx += 1
                if idx == self.batchsize:
                    frame_faces = len(item.detected_faces)
                    if f_idx + 1 != frame_faces:
                        self._rollover = ExtractMedia(item.filename, item.image)
                        self._rollover.add_detected_faces(item.detected_faces[f_idx + 1:])
                        logger.trace("Rolled over %s faces of %s to next batch for '%s'",
                                     len(self._rollover.detected_faces), frame_faces,
                                     item.filename)
                    break
        if batch:
            logger.trace("Returning batch: %s", {k: v.shape if isinstance(v, np.ndarray) else v
                                                 for k, v in batch.items()})
        else:
            logger.trace(item)
        return exhausted, batch

    def _collect_item(self, queue):
        """ Collect the item from the _rollover dict or from the queue
            Add face count per frame to self._faces_per_filename for joining
            batches back up in finalize """
        if self._rollover is not None:
            logger.trace("Getting from _rollover: (filename: `%s`, faces: %s)",
                         self._rollover.filename, len(self._rollover.detected_faces))
            item = self._rollover
            self._rollover = None
        else:
            item = self._get_item(queue)
            if item != "EOF":
                logger.trace("Getting from queue: (filename: %s, faces: %s)",
                             item.filename, len(item.detected_faces))
                self._faces_per_filename[item.filename] = len(item.detected_faces)
        return item

    def _predict(self, batch):
        """ Just return the masker's predict function """
        return self.predict(batch)

    def finalize(self, batch):
        """ Finalize the output from Masker

        This should be called as the final task of each `plugin`.

        Pairs the detected faces back up with their original frame before yielding each frame.

        Parameters
        ----------
        batch : dict
            The final ``dict`` from the `plugin` process. It must contain the `keys`:
            ``detected_faces``, ``filename``

        Yields
        ------
        :class:`~plugins.extract.pipeline.ExtractMedia`
            The :attr:`DetectedFaces` list will be populated for this class with the bounding
            boxes, landmarks and masks for the detected faces found in the frame.
        """
        for mask, face in zip(batch["prediction"], batch["detected_faces"]):
            face.add_mask(self._storage_name,
                          mask,
                          face.feed_matrix,
                          face.feed_interpolators[1],
                          storage_size=self._storage_size)
            face.feed = dict()

        logger.trace("Item out: %s", {key: val.shape if isinstance(val, np.ndarray) else val
                                      for key, val in batch.items()})
        for filename, face in zip(batch["filename"], batch["detected_faces"]):
            self._output_faces.append(face)
            if len(self._output_faces) != self._faces_per_filename[filename]:
                continue

            output = self._extract_media.pop(filename)
            output.add_detected_faces(self._output_faces)
            self._output_faces = []
            logger.trace("Yielding: (filename: '%s', image: %s, detected_faces: %s)",
                         output.filename, output.image_shape, len(output.detected_faces))
            yield output

    # <<< PROTECTED ACCESS METHODS >>> #
    @staticmethod
    def _resize(image, target_size):
        """ resize input and output of mask models appropriately """
        height, width, channels = image.shape
        image_size = max(height, width)
        scale = target_size / image_size
        if scale == 1.:
            return image
        method = cv2.INTER_CUBIC if scale > 1. else cv2.INTER_AREA  # pylint: disable=no-member
        resized = cv2.resize(image, (0, 0), fx=scale, fy=scale, interpolation=method)
        resized = resized if channels > 1 else resized[..., None]
        return resized
Exemple #3
0
    def get_batch(self, queue):
        """ Get items for inputting into the masker from the queue in batches

        Items are returned from the ``queue`` in batches of
        :attr:`~plugins.extract._base.Extractor.batchsize`

        Items are received as :class:`~plugins.extract.pipeline.ExtractMedia` objects and converted
        to ``dict`` for internal processing.

        To ensure consistent batch sizes for masker the items are split into separate items for
        each :class:`~lib.align.DetectedFace` object.

        Remember to put ``'EOF'`` to the out queue after processing
        the final batch

        Outputs items in the following format. All lists are of length
        :attr:`~plugins.extract._base.Extractor.batchsize`:

        >>> {'filename': [<filenames of source frames>],
        >>>  'detected_faces': [[<lib.align.DetectedFace objects]]}

        Parameters
        ----------
        queue : queue.Queue()
            The ``queue`` that the plugin will be fed from.

        Returns
        -------
        exhausted, bool
            ``True`` if queue is exhausted, ``False`` if not
        batch, dict
            A dictionary of lists of :attr:`~plugins.extract._base.Extractor.batchsize`:
        """
        exhausted = False
        batch = dict()
        idx = 0
        while idx < self.batchsize:
            item = self._collect_item(queue)
            if item == "EOF":
                logger.trace("EOF received")
                exhausted = True
                break
            # Put frames with no faces into the out queue to keep TQDM consistent
            if not item.detected_faces:
                self._queues["out"].put(item)
                continue
            for f_idx, face in enumerate(item.detected_faces):

                image = item.get_image_copy(self.color_format)
                roi = np.ones((*item.image_size[:2], 1), dtype="float32")

                if not self._image_is_aligned:
                    # Add the ROI mask to image so we can get the ROI mask with a single warp
                    image = np.concatenate([image, roi], axis=-1)

                feed_face = AlignedFace(face.landmarks_xy,
                                        image=image,
                                        centering=self._storage_centering,
                                        size=self.input_size,
                                        coverage_ratio=self.coverage_ratio,
                                        dtype="float32",
                                        is_aligned=self._image_is_aligned)

                if not self._image_is_aligned:
                    # Split roi mask from feed face alpha channel
                    roi_mask = feed_face.face[..., 3]
                    feed_face._face = feed_face.face[..., :3]  # pylint:disable=protected-access
                else:
                    # We have to do the warp here as AlignedFace did not perform it
                    roi_mask = transform_image(roi,
                                               feed_face.matrix,
                                               feed_face.size,
                                               padding=feed_face.padding)

                batch.setdefault("roi_masks", []).append(roi_mask)
                batch.setdefault("detected_faces", []).append(face)
                batch.setdefault("feed_faces", []).append(feed_face)
                batch.setdefault("filename", []).append(item.filename)
                idx += 1
                if idx == self.batchsize:
                    frame_faces = len(item.detected_faces)
                    if f_idx + 1 != frame_faces:
                        self._rollover = ExtractMedia(
                            item.filename,
                            item.image,
                            detected_faces=item.detected_faces[f_idx + 1:])
                        logger.trace(
                            "Rolled over %s faces of %s to next batch for '%s'",
                            len(self._rollover.detected_faces), frame_faces,
                            item.filename)
                    break
        if batch:
            logger.trace(
                "Returning batch: %s", {
                    k: v.shape if isinstance(v, np.ndarray) else v
                    for k, v in batch.items()
                })
        else:
            logger.trace(item)
        return exhausted, batch
Exemple #4
0
class Aligner(Extractor):  # pylint:disable=abstract-method
    """ Aligner plugin _base Object

    All Aligner plugins must inherit from this class

    Parameters
    ----------
    git_model_id: int
        The second digit in the github tag that identifies this model. See
        https://github.com/deepfakes-models/faceswap-models for more information
    model_filename: str
        The name of the model file to be loaded
    normalize_method: {`None`, 'clahe', 'hist', 'mean'}, optional
        Normalize the images fed to the aligner. Default: ``None``

    Other Parameters
    ----------------
    configfile: str, optional
        Path to a custom configuration ``ini`` file. Default: Use system configfile

    See Also
    --------
    plugins.extract.pipeline : The extraction pipeline for calling plugins
    plugins.extract.align : Aligner plugins
    plugins.extract._base : Parent class for all extraction plugins
    plugins.extract.detect._base : Detector parent class for extraction plugins.
    plugins.extract.mask._base : Masker parent class for extraction plugins.
    """

    def __init__(self, git_model_id=None, model_filename=None,
                 configfile=None, normalize_method=None):
        logger.debug("Initializing %s: (normalize_method: %s)", self.__class__.__name__,
                     normalize_method)
        super().__init__(git_model_id,
                         model_filename,
                         configfile=configfile)
        self.normalize_method = normalize_method

        self._plugin_type = "align"
        self._faces_per_filename = dict()  # Tracking for recompiling face batches
        self._rollover = None  # Items that are rolled over from the previous batch in get_batch
        self._output_faces = []
        logger.debug("Initialized %s", self.__class__.__name__)

    # << QUEUE METHODS >>> #
    def get_batch(self, queue):
        """ Get items for inputting into the aligner from the queue in batches

        Items are returned from the ``queue`` in batches of
        :attr:`~plugins.extract._base.Extractor.batchsize`

        Items are received as :class:`~plugins.extract.pipeline.ExtractMedia` objects and converted
        to ``dict`` for internal processing.

        To ensure consistent batch sizes for aligner the items are split into separate items for
        each :class:`~lib.faces_detect.DetectedFace` object.

        Remember to put ``'EOF'`` to the out queue after processing
        the final batch

        Outputs items in the following format. All lists are of length
        :attr:`~plugins.extract._base.Extractor.batchsize`:

        >>> {'filename': [<filenames of source frames>],
        >>>  'image': [<source images>],
        >>>  'detected_faces': [[<lib.faces_detect.DetectedFace objects]]}

        Parameters
        ----------
        queue : queue.Queue()
            The ``queue`` that the plugin will be fed from.

        Returns
        -------
        exhausted, bool
            ``True`` if queue is exhausted, ``False`` if not
        batch, dict
            A dictionary of lists of :attr:`~plugins.extract._base.Extractor.batchsize`:
        """
        exhausted = False
        batch = dict()
        idx = 0
        while idx < self.batchsize:
            item = self._collect_item(queue)
            if item == "EOF":
                logger.trace("EOF received")
                exhausted = True
                break
            # Put frames with no faces into the out queue to keep TQDM consistent
            if not item.detected_faces:
                self._queues["out"].put(item)
                continue

            converted_image = item.get_image_copy(self.colorformat)
            for f_idx, face in enumerate(item.detected_faces):
                batch.setdefault("image", []).append(converted_image)
                batch.setdefault("detected_faces", []).append(face)
                batch.setdefault("filename", []).append(item.filename)
                idx += 1
                if idx == self.batchsize:
                    frame_faces = len(item.detected_faces)
                    if f_idx + 1 != frame_faces:
                        self._rollover = ExtractMedia(item.filename, item.image)
                        self._rollover.add_detected_faces(item.detected_faces[f_idx + 1:])
                        logger.trace("Rolled over %s faces of %s to next batch for '%s'",
                                     len(self._rollover.detected_faces), frame_faces,
                                     item.filename)
                    break
        if batch:
            logger.trace("Returning batch: %s", {k: v.shape if isinstance(v, np.ndarray) else v
                                                 for k, v in batch.items()})
        else:
            logger.trace(item)
        return exhausted, batch

    def _collect_item(self, queue):
        """ Collect the item from the :attr:`_rollover` dict or from the queue
            Add face count per frame to self._faces_per_filename for joining
            batches back up in finalize """
        if self._rollover is not None:
            logger.trace("Getting from _rollover: (filename: `%s`, faces: %s)",
                         self._rollover.filename, len(self._rollover.detected_faces))
            item = self._rollover
            self._rollover = None
        else:
            item = self._get_item(queue)
            if item != "EOF":
                logger.trace("Getting from queue: (filename: %s, faces: %s)",
                             item.filename, len(item.detected_faces))
                self._faces_per_filename[item.filename] = len(item.detected_faces)
        return item

    # <<< FINALIZE METHODS >>> #
    def finalize(self, batch):
        """ Finalize the output from Aligner

        This should be called as the final task of each `plugin`.

        Pairs the detected faces back up with their original frame before yielding each frame.

        Parameters
        ----------
        batch : dict
            The final ``dict`` from the `plugin` process. It must contain the `keys`:
            ``detected_faces``, ``landmarks``, ``filename``

        Yields
        ------
        :class:`~plugins.extract.pipeline.ExtractMedia`
            The :attr:`DetectedFaces` list will be populated for this class with the bounding boxes
            and landmarks for the detected faces found in the frame.
        """

        for face, landmarks in zip(batch["detected_faces"], batch["landmarks"]):
            if not isinstance(landmarks, np.ndarray):
                landmarks = np.array(landmarks)
            face.landmarks_xy = landmarks

        logger.trace("Item out: %s", {key: val.shape if isinstance(val, np.ndarray) else val
                                      for key, val in batch.items()})

        for filename, face in zip(batch["filename"], batch["detected_faces"]):
            self._output_faces.append(face)
            if len(self._output_faces) != self._faces_per_filename[filename]:
                continue

            output = self._extract_media.pop(filename)
            output.add_detected_faces(self._output_faces)
            self._output_faces = []

            logger.trace("Final Output: (filename: '%s', image shape: %s, detected_faces: %s, "
                         "item: %s)",
                         output.filename, output.image_shape, output.detected_faces, output)
            yield output

    # <<< PROTECTED METHODS >>> #
    # <<< PREDICT WRAPPER >>> #
    def _predict(self, batch):
        """ Just return the aligner's predict function """
        return self.predict(batch)

    # <<< FACE NORMALIZATION METHODS >>> #
    def _normalize_faces(self, faces):
        """ Normalizes the face for feeding into model

        The normalization method is dictated by the command line argument `-nh (--normalization)`
        """
        if self.normalize_method is None:
            return faces
        logger.trace("Normalizing faces")
        meth = getattr(self, "_normalize_{}".format(self.normalize_method.lower()))
        faces = [meth(face) for face in faces]
        logger.trace("Normalized faces")
        return faces

    @staticmethod
    def _normalize_mean(face):
        """ Normalize Face to the Mean """
        face = face / 255.0
        for chan in range(3):
            layer = face[:, :, chan]
            layer = (layer - layer.min()) / (layer.max() - layer.min())
            face[:, :, chan] = layer
        return face * 255.0

    @staticmethod
    def _normalize_hist(face):
        """ Equalize the RGB histogram channels """
        for chan in range(3):
            face[:, :, chan] = cv2.equalizeHist(face[:, :, chan])
        return face

    @staticmethod
    def _normalize_clahe(face):
        """ Perform Contrast Limited Adaptive Histogram Equalization """
        clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4, 4))
        for chan in range(3):
            face[:, :, chan] = clahe.apply(face[:, :, chan])
        return face