def test_playout(self):
     log = xes_importer.apply(
         os.path.join("input_data", "running-example.xes"))
     from pm4py.algo.discovery.alpha import algorithm as alpha_miner
     net, im, fm = alpha_miner.apply(log)
     from pm4py.algo.simulation.playout import simulator
     log2 = simulator.apply(net, im, fm)
Exemple #2
0
def play_out(*args: Union[Tuple[PetriNet, Marking, Marking], dict, Counter, ProcessTree], **kwargs) -> EventLog:
    """
    Performs the playout of the provided model,
    i.e., gets a set of traces from the model.
    The function either takes a petri net, initial and final marking, or, a process tree as an input.

    Parameters
    ---------------
    args
        Model (Petri net, initial, final marking) or ProcessTree
    kwargs
        Parameters of the playout

    Returns
    --------------
    log
        Simulated event log
    """
    if len(args) == 3:
        from pm4py.objects.petri.petrinet import PetriNet
        if type(args[0]) is PetriNet:
            from pm4py.algo.simulation.playout import simulator
            return simulator.apply(args[0], args[1], final_marking=args[2], **kwargs)
        elif type(args[0]) is dict or type(args[0]) is Counter:
            from pm4py.objects.dfg.utils import dfg_playout
            return dfg_playout.apply(args[0], args[1], args[2], **kwargs)
    elif len(args) == 1:
        from pm4py.objects.process_tree.process_tree import ProcessTree
        if type(args[0]) is ProcessTree:
            from pm4py.algo.simulation.tree_playout import algorithm
            return algorithm.apply(args[0], **kwargs)
    raise Exception("unsupported model for playout")
Exemple #3
0
def generate_process_tree(**kwargs) -> ProcessTree:
    """
    Generates a process tree

    Parameters
    -------------
    kwargs
        Parameters of the process tree generator algorithm

    Returns
    -------------
    model
        process tree
    """
    from pm4py.algo.simulation.tree_generator import simulator
    return simulator.apply(**kwargs)
Exemple #4
0
 def test_emd_2(self):
     from pm4py.algo.evaluation.earth_mover_distance import evaluator as earth_mover_distance
     log = xes_importer.apply(
         os.path.join("input_data", "running-example.xes"))
     lang_log = variants_get.get_language(log)
     net1, im1, fm1 = inductive_miner.apply(log)
     lang_model1 = variants_get.get_language(
         simulator.apply(
             net1,
             im1,
             fm1,
             variant=simulator.Variants.STOCHASTIC_PLAYOUT,
             parameters={
                 simulator.Variants.STOCHASTIC_PLAYOUT.value.Parameters.LOG:
                 log
             }))
     emd = earth_mover_distance.apply(lang_model1, lang_log)
Exemple #5
0
def execute_script():
    M = {
        ("a", "b", "d", "e"): 0.49,
        ("a", "d", "b", "e"): 0.49,
        ("a", "c", "d", "e"): 0.01,
        ("a", "d", "c", "e"): 0.01
    }

    L1 = {
        ("a", "b", "d", "e"): 0.49,
        ("a", "d", "b", "e"): 0.49,
        ("a", "c", "d", "e"): 0.01,
        ("a", "d", "c", "e"): 0.01
    }
    # the distance between M and L1, that we expect to be zero, is zero according to the EMD
    emd = earth_mover_distance.apply(M, L1)
    print("M L1 emd distance:", emd)

    L2 = {
        ("a", "b", "e"): 0.5,
        ("a", "b", "d", "e"): 0.245,
        ("a", "d", "b", "e"): 0.245,
        ("a", "c", "d", "e"): 0.005,
        ("a", "d", "c", "e"): 0.005
    }
    # the distance between M and L2 according to the EMD is 0.1275 (paper value 0.125)
    emd = earth_mover_distance.apply(M, L2)
    print("M L2 emd distance:", emd)

    L3 = {
        ("a", "b", "d", "e"): 0.489,
        ("a", "d", "b", "e"): 0.489,
        ("a", "c", "d", "e"): 0.01,
        ("a", "d", "c", "e"): 0.01,
        ("a", "b", "e"): 0.002
    }
    # the distance between M and L3 according to the EMD is 0.0005 (paper value 0.0005), perfect!
    emd = earth_mover_distance.apply(M, L3)
    print("M L3 emd distance:", emd)

    L4 = {("a", "b", "d", "e"): 0.5, ("a", "d", "b", "e"): 0.5}
    # the distance between M and L4 according to the EMD is 0.005 (paper value 0.005), perfect!
    emd = earth_mover_distance.apply(M, L4)
    print("M L4 emd distance:", emd)

    L5 = {("a", "c", "d", "e"): 0.5, ("a", "d", "c", "e"): 0.5}
    # the distance between M and L5 according to the EMD is 0.245 (paper value 0.245), perfect!
    emd = earth_mover_distance.apply(M, L5)
    print("M L5 emd distance:", emd)

    log = xes_importer.apply(
        os.path.join("..", "tests", "input_data", "running-example.xes"))
    lang_log = variants_get.get_language(log)
    net0, im0, fm0 = alpha_miner.apply(log)
    net1, im1, fm1 = inductive_miner.apply(log)
    lang_model0 = variants_get.get_language(
        simulator.apply(
            net0,
            im0,
            fm0,
            variant=simulator.Variants.STOCHASTIC_PLAYOUT,
            parameters={
                simulator.Variants.STOCHASTIC_PLAYOUT.value.Parameters.LOG: log
            }))
    lang_model1 = variants_get.get_language(
        simulator.apply(
            net1,
            im1,
            fm1,
            variant=simulator.Variants.STOCHASTIC_PLAYOUT,
            parameters={
                simulator.Variants.STOCHASTIC_PLAYOUT.value.Parameters.LOG: log
            }))
    emd = earth_mover_distance.apply(lang_model0, lang_log)
    print("running-example alpha emd distance: ", emd)
    emd = earth_mover_distance.apply(lang_model1, lang_log)
    print("running-example inductive emd distance: ", emd)