def execute_script(): log = pm4py.read_xes(os.path.join("..", "tests", "input_data", "running-example.xes")) bpmn_graph = bpmn_importer.apply(os.path.join("..", "tests", "input_data", "running-example.bpmn")) net, im, fm = bpmn_converter.apply(bpmn_graph, variant=bpmn_converter.Variants.TO_PETRI_NET) precision_tbr = pm4py.evaluate_precision_tbr(log, net, im, fm) print("precision", precision_tbr) fitness_tbr = pm4py.evaluate_fitness_tbr(log, net, im, fm) print("fitness", fitness_tbr) print(pm4py.soundness_woflan(net, im, fm))
def test_fitness_tbr(self): log = pm4py.read_xes("input_data/running-example.xes") net, im, fm = pm4py.discover_petri_net_inductive(log) fitness_tbr = pm4py.evaluate_fitness_tbr(log, net, im, fm)
def execute_script(): ENABLE_VISUALIZATION = True # reads a XES into an event log log1 = pm4py.read_xes("../tests/input_data/running-example.xes") # reads a CSV into a dataframe df = pd.read_csv("../tests/input_data/running-example.csv") # formats the dataframe with the mandatory columns for process mining purposes df = pm4py.format_dataframe(df, case_id="case:concept:name", activity_key="concept:name", timestamp_key="time:timestamp") # converts the dataframe to an event log log2 = pm4py.convert_to_event_log(df) # converts the log read from XES into a stream and dataframe respectively stream1 = pm4py.convert_to_event_stream(log1) df2 = pm4py.convert_to_dataframe(log1) # writes the log1 to a XES file pm4py.write_xes(log1, "ru1.xes") dfg, dfg_sa, dfg_ea = pm4py.discover_dfg(log1) petri_alpha, im_alpha, fm_alpha = pm4py.discover_petri_net_alpha(log1) petri_inductive, im_inductive, fm_inductive = pm4py.discover_petri_net_inductive( log1) petri_heuristics, im_heuristics, fm_heuristics = pm4py.discover_petri_net_heuristics( log1) tree_inductive = pm4py.discover_tree_inductive(log1) heu_net = pm4py.discover_heuristics_net(log1) pm4py.write_dfg(dfg, dfg_sa, dfg_ea, "ru_dfg.dfg") pm4py.write_petri_net(petri_alpha, im_alpha, fm_alpha, "ru_alpha.pnml") pm4py.write_petri_net(petri_inductive, im_inductive, fm_inductive, "ru_inductive.pnml") pm4py.write_petri_net(petri_heuristics, im_heuristics, fm_heuristics, "ru_heuristics.pnml") pm4py.write_process_tree(tree_inductive, "ru_inductive.ptml") dfg, dfg_sa, dfg_ea = pm4py.read_dfg("ru_dfg.dfg") petri_alpha, im_alpha, fm_alpha = pm4py.read_petri_net("ru_alpha.pnml") petri_inductive, im_inductive, fm_inductive = pm4py.read_petri_net( "ru_inductive.pnml") petri_heuristics, im_heuristics, fm_heuristics = pm4py.read_petri_net( "ru_heuristics.pnml") tree_inductive = pm4py.read_process_tree("ru_inductive.ptml") pm4py.save_vis_petri_net(petri_alpha, im_alpha, fm_alpha, "ru_alpha.png") pm4py.save_vis_petri_net(petri_inductive, im_inductive, fm_inductive, "ru_inductive.png") pm4py.save_vis_petri_net(petri_heuristics, im_heuristics, fm_heuristics, "ru_heuristics.png") pm4py.save_vis_process_tree(tree_inductive, "ru_inductive_tree.png") pm4py.save_vis_heuristics_net(heu_net, "ru_heunet.png") pm4py.save_vis_dfg(dfg, dfg_sa, dfg_ea, "ru_dfg.png") if ENABLE_VISUALIZATION: pm4py.view_petri_net(petri_alpha, im_alpha, fm_alpha, format="svg") pm4py.view_petri_net(petri_inductive, im_inductive, fm_inductive, format="svg") pm4py.view_petri_net(petri_heuristics, im_heuristics, fm_heuristics, format="svg") pm4py.view_process_tree(tree_inductive, format="svg") pm4py.view_heuristics_net(heu_net, format="svg") pm4py.view_dfg(dfg, dfg_sa, dfg_ea, format="svg") aligned_traces = pm4py.conformance_alignments(log1, petri_inductive, im_inductive, fm_inductive) replayed_traces = pm4py.conformance_tbr(log1, petri_inductive, im_inductive, fm_inductive) fitness_tbr = pm4py.evaluate_fitness_tbr(log1, petri_inductive, im_inductive, fm_inductive) print("fitness_tbr", fitness_tbr) fitness_align = pm4py.evaluate_fitness_alignments(log1, petri_inductive, im_inductive, fm_inductive) print("fitness_align", fitness_align) precision_tbr = pm4py.evaluate_precision_tbr(log1, petri_inductive, im_inductive, fm_inductive) print("precision_tbr", precision_tbr) precision_align = pm4py.evaluate_precision_alignments( log1, petri_inductive, im_inductive, fm_inductive) print("precision_align", precision_align) print("log start activities = ", pm4py.get_start_activities(log2)) print("df start activities = ", pm4py.get_start_activities(df2)) print("log end activities = ", pm4py.get_end_activities(log2)) print("df end activities = ", pm4py.get_end_activities(df2)) print("log attributes = ", pm4py.get_attributes(log2)) print("df attributes = ", pm4py.get_attributes(df2)) print("log org:resource values = ", pm4py.get_attribute_values(log2, "org:resource")) print("df org:resource values = ", pm4py.get_attribute_values(df2, "org:resource")) print("start_activities len(filt_log) = ", len(pm4py.filter_start_activities(log2, ["register request"]))) print("start_activities len(filt_df) = ", len(pm4py.filter_start_activities(df2, ["register request"]))) print("end_activities len(filt_log) = ", len(pm4py.filter_end_activities(log2, ["pay compensation"]))) print("end_activities len(filt_df) = ", len(pm4py.filter_end_activities(df2, ["pay compensation"]))) print( "attributes org:resource len(filt_log) (cases) cases = ", len( pm4py.filter_attribute_values(log2, "org:resource", ["Ellen"], level="case"))) print( "attributes org:resource len(filt_log) (cases) events = ", len( pm4py.filter_attribute_values(log2, "org:resource", ["Ellen"], level="event"))) print( "attributes org:resource len(filt_df) (events) cases = ", len( pm4py.filter_attribute_values(df2, "org:resource", ["Ellen"], level="case"))) print( "attributes org:resource len(filt_df) (events) events = ", len( pm4py.filter_attribute_values(df2, "org:resource", ["Ellen"], level="event"))) print( "attributes org:resource len(filt_df) (events) events notpositive = ", len( pm4py.filter_attribute_values(df2, "org:resource", ["Ellen"], level="event", retain=False))) print("variants log = ", pm4py.get_variants(log2)) print("variants df = ", pm4py.get_variants(df2)) print( "variants filter log = ", len( pm4py.filter_variants(log2, [[ "register request", "examine thoroughly", "check ticket", "decide", "reject request" ]]))) print( "variants filter df = ", len( pm4py.filter_variants(df2, [[ "register request", "examine thoroughly", "check ticket", "decide", "reject request" ]]))) print("variants filter percentage = ", len(pm4py.filter_variants_percentage(log2, threshold=0.8))) print( "paths filter log len = ", len( pm4py.filter_directly_follows_relation( log2, [("register request", "examine casually")]))) print( "paths filter dataframe len = ", len( pm4py.filter_directly_follows_relation( df2, [("register request", "examine casually")]))) print( "timeframe filter log events len = ", len( pm4py.filter_time_range(log2, "2011-01-01 00:00:00", "2011-02-01 00:00:00", mode="events"))) print( "timeframe filter log traces_contained len = ", len( pm4py.filter_time_range(log2, "2011-01-01 00:00:00", "2011-02-01 00:00:00", mode="traces_contained"))) print( "timeframe filter log traces_intersecting len = ", len( pm4py.filter_time_range(log2, "2011-01-01 00:00:00", "2011-02-01 00:00:00", mode="traces_intersecting"))) print( "timeframe filter df events len = ", len( pm4py.filter_time_range(df2, "2011-01-01 00:00:00", "2011-02-01 00:00:00", mode="events"))) print( "timeframe filter df traces_contained len = ", len( pm4py.filter_time_range(df2, "2011-01-01 00:00:00", "2011-02-01 00:00:00", mode="traces_contained"))) print( "timeframe filter df traces_intersecting len = ", len( pm4py.filter_time_range(df2, "2011-01-01 00:00:00", "2011-02-01 00:00:00", mode="traces_intersecting"))) # remove the temporary files os.remove("ru1.xes") os.remove("ru_dfg.dfg") os.remove("ru_alpha.pnml") os.remove("ru_inductive.pnml") os.remove("ru_heuristics.pnml") os.remove("ru_inductive.ptml") os.remove("ru_alpha.png") os.remove("ru_inductive.png") os.remove("ru_heuristics.png") os.remove("ru_inductive_tree.png") os.remove("ru_heunet.png") os.remove("ru_dfg.png")
def test_bpmn_to_petri_net(self): log = pm4py.read_xes(os.path.join("input_data", "running-example.xes")) bpmn_graph = bpmn_importer.apply(os.path.join("input_data", "running-example.bpmn")) net, im, fm = bpmn_converter.apply(bpmn_graph, variant=bpmn_converter.Variants.TO_PETRI_NET) fitness_tbr = pm4py.evaluate_fitness_tbr(log, net, im, fm)