Exemple #1
0
 def test_statistics_log(self):
     log = pm4py.read_xes("input_data/running-example.xes")
     pm4py.get_start_activities(log)
     pm4py.get_end_activities(log)
     pm4py.get_attributes(log)
     pm4py.get_trace_attributes(log)
     pm4py.get_attribute_values(log, "org:resource")
     pm4py.get_variants(log)
Exemple #2
0
 def test_statistics_df(self):
     df = pd.read_csv("input_data/running-example.csv")
     df = pm4py.format_dataframe(df, case_id="case:concept:name", activity_key="concept:name",
                                 timestamp_key="time:timestamp")
     pm4py.get_start_activities(df)
     pm4py.get_end_activities(df)
     pm4py.get_attributes(df)
     pm4py.get_attribute_values(df, "org:resource")
     pm4py.get_variants(df)
Exemple #3
0
def execute_script():
    # read an event log
    log = pm4py.read_xes("../tests/compressed_input_data/02_teleclaims.xes.gz")
    # log = pm4py.read_xes("../tests/input_data/receipt.xes")
    print("number of variants of the original log ->", len(pm4py.get_variants(log)))
    # discover a process model
    tree = pm4py.discover_tree_inductive(log)
    # simulate a log out of the model (to have another log that is similar to the original)
    aa = time.time()
    min_trace_length = bottomup_discovery.get_min_trace_length(tree)
    simulated_log = tree_playout.apply(tree, variant=tree_playout.Variants.EXTENSIVE,
                                       parameters={"max_trace_length": min_trace_length + 2})
    print("number of variants of the simulated log -> ", len(simulated_log))
    # apply the alignments between this log and the model
    bb = time.time()
    aligned_traces = logs_alignment.apply(log, simulated_log)
    cc = time.time()
    print(aligned_traces[0])
    print("playout time", bb - aa)
    print("alignments time", cc - bb)
    print("TOTAL", cc - aa)
    print(alignment_based.evaluate(aligned_traces))
    # apply the anti alignments between this log and the model
    dd = time.time()
    anti_aligned_traces = logs_alignment.apply(log, simulated_log,
                                               parameters={
                                                   logs_alignment.Variants.EDIT_DISTANCE.value.Parameters.PERFORM_ANTI_ALIGNMENT: True})
    ee = time.time()
    print(anti_aligned_traces[0])
    print("anti alignments time", ee - dd)
    print(alignment_based.evaluate(anti_aligned_traces))
Exemple #4
0
def execute_script():
    log = pm4py.read_xes(
        os.path.join("..", "tests", "input_data", "receipt.xes"))
    activities = pm4py.get_attribute_values(log, "concept:name")
    dfg, sa, ea = pm4py.discover_dfg(log)
    # filters the DFG to make a simpler one
    perc = 0.5
    dfg, sa, ea, activities = dfg_filtering.filter_dfg_on_activities_percentage(
        dfg, sa, ea, activities, perc)
    dfg, sa, ea, activities = dfg_filtering.filter_dfg_on_paths_percentage(
        dfg, sa, ea, activities, perc)
    # creates the simulated log
    simulated_log = dfg_playout.apply(dfg, sa, ea)
    print(simulated_log)
    print(len(simulated_log))
    print(sum(x.attributes["probability"] for x in simulated_log))
    # shows the two DFGs to show that they are identical
    pm4py.view_dfg(dfg, sa, ea, log=log, format="svg")
    new_dfg, new_sa, new_ea = pm4py.discover_dfg(simulated_log)
    pm4py.view_dfg(new_dfg, new_sa, new_ea, log=simulated_log, format="svg")
    for trace in simulated_log:
        print(list(x["concept:name"] for x in trace))
        print(trace.attributes["probability"],
              dfg_playout.get_trace_probability(trace, dfg, sa, ea))
        break
    dfg, sa, ea = pm4py.discover_dfg(log)
    variants = pm4py.get_variants(log)
    sum_prob_log_variants = 0.0
    for var in variants:
        sum_prob_log_variants += dfg_playout.get_trace_probability(
            variants[var][0], dfg, sa, ea)
    print(
        "percentage of behavior allowed from DFG that is in the log (from 0.0 to 1.0): ",
        sum_prob_log_variants)
def execute_script():
    log = pm4py.read_xes(
        os.path.join("..", "tests", "input_data", "receipt.xes"))
    print("number of cases", len(log))
    print("number of events", sum(len(x) for x in log))
    print("number of variants", len(pm4py.get_variants(log)))
    ac = get.get_attribute_values(log, "concept:name")
    dfg, sa, ea = pm4py.discover_dfg(log)
    perc = 0.5
    dfg, sa, ea, ac = dfg_filtering.filter_dfg_on_activities_percentage(
        dfg, sa, ea, ac, perc)
    dfg, sa, ea, ac = dfg_filtering.filter_dfg_on_paths_percentage(
        dfg, sa, ea, ac, perc)
    aa = time.time()
    aligned_traces = dfg_alignment.apply(log, dfg, sa, ea)
    bb = time.time()
    net, im, fm = pm4py.convert_to_petri_net(dfg, sa, ea)
    for trace in aligned_traces:
        if trace["cost"] != trace["internal_cost"]:
            print(trace)
            pass
    print(bb - aa)
    print(sum(x["visited_states"] for x in aligned_traces))
    print(
        sum(x["cost"] // align_utils.STD_MODEL_LOG_MOVE_COST
            for x in aligned_traces))
    gviz = visualizer.apply(dfg,
                            activities_count=ac,
                            parameters={
                                "start_activities": sa,
                                "end_activities": ea,
                                "format": "svg"
                            })
    visualizer.view(gviz)
    cc = time.time()
    aligned_traces2 = petri_alignments.apply(
        log,
        net,
        im,
        fm,
        variant=petri_alignments.Variants.VERSION_DIJKSTRA_LESS_MEMORY)
    dd = time.time()
    print(dd - cc)
    print(sum(x["visited_states"] for x in aligned_traces2))
    print(
        sum(x["cost"] // align_utils.STD_MODEL_LOG_MOVE_COST
            for x in aligned_traces2))
def apply(log: EventLog, parameters=None):
    parameters = parameters if parameters is not None else dict()
    activity_key = util.exec_utils.get_param_value(
        Parameters.ACTIVITY_KEY, parameters,
        util.xes_constants.DEFAULT_NAME_KEY)
    root = Trie()
    variants = list(map(lambda v: v.split(','), pm4py.get_variants(log)))
    for variant in variants:
        trie = root
        for i, activity in enumerate(variant):
            match = False
            for c in trie.children:
                if c.label == activity:
                    trie = c
                    match = True
                    break
            if match:
                continue
            node = Trie(label=activity, parent=trie, depth=trie.depth + 1)
            trie.children.append(node)
            trie = node
            if i == len(variant) - 1:
                trie.final = True
    return root
Exemple #7
0
def import_log_file(file_name):
    log = xes_importer.apply('italian_help_desk.xes')
    attributes_list = pm4py.get_attributes(log)
    print(attributes_list)
    variants = pm4py.get_variants(log)
    return log
Exemple #8
0
             else:
                 event["@@classifier"] = event["concept:name"]
     activities = set(
         attributes_get_log.get_attribute_values(log,
                                                 CLASSIFIER).keys())
     variants = variants_get.get_variants(
         log, parameters={"pm4py:param:activity_key": CLASSIFIER})
     fp_log = pm4py.algo.discovery.footprints.log.variants.entire_event_log.apply(
         log, parameters={"pm4py:param:activity_key": CLASSIFIER})
 elif "parquet" in log_name:
     from pm4py.statistics.attributes.pandas import get as attributes_get_pandas
     dataframe = pd.read_parquet(log_path)
     activities = set(
         attributes_get_pandas.get_attribute_values(
             dataframe, CLASSIFIER).keys())
     variants = pm4py.get_variants(dataframe)
     fp_log = pm4py.algo.discovery.footprints.log.variants.entire_dataframe.apply(
         dataframe)
 print("start tree_im_clean")
 tree_im_clean = im_clean.apply_tree(
     log, parameters={"pm4py:param:activity_key": CLASSIFIER})
 print("end tree_im_clean")
 tree_im = inductive_miner.apply_tree_variants(
     variants,
     variant=inductive_miner.Variants.IM,
     parameters={"pm4py:param:activity_key": CLASSIFIER})
 print(tree_im_clean)
 print(tree_im)
 tree_imf = inductive_miner.apply_tree_variants(
     variants,
     variant=inductive_miner.Variants.IMf,
def execute_script():
    ENABLE_VISUALIZATION = True

    # reads a XES into an event log
    log1 = pm4py.read_xes("../tests/input_data/running-example.xes")

    # reads a CSV into a dataframe
    df = pd.read_csv("../tests/input_data/running-example.csv")
    # formats the dataframe with the mandatory columns for process mining purposes
    df = pm4py.format_dataframe(df,
                                case_id="case:concept:name",
                                activity_key="concept:name",
                                timestamp_key="time:timestamp")
    # converts the dataframe to an event log
    log2 = pm4py.convert_to_event_log(df)

    # converts the log read from XES into a stream and dataframe respectively
    stream1 = pm4py.convert_to_event_stream(log1)
    df2 = pm4py.convert_to_dataframe(log1)

    # writes the log1 to a XES file
    pm4py.write_xes(log1, "ru1.xes")

    dfg, dfg_sa, dfg_ea = pm4py.discover_dfg(log1)
    petri_alpha, im_alpha, fm_alpha = pm4py.discover_petri_net_alpha(log1)
    petri_inductive, im_inductive, fm_inductive = pm4py.discover_petri_net_inductive(
        log1)
    petri_heuristics, im_heuristics, fm_heuristics = pm4py.discover_petri_net_heuristics(
        log1)
    tree_inductive = pm4py.discover_tree_inductive(log1)
    heu_net = pm4py.discover_heuristics_net(log1)

    pm4py.write_dfg(dfg, dfg_sa, dfg_ea, "ru_dfg.dfg")
    pm4py.write_petri_net(petri_alpha, im_alpha, fm_alpha, "ru_alpha.pnml")
    pm4py.write_petri_net(petri_inductive, im_inductive, fm_inductive,
                          "ru_inductive.pnml")
    pm4py.write_petri_net(petri_heuristics, im_heuristics, fm_heuristics,
                          "ru_heuristics.pnml")
    pm4py.write_process_tree(tree_inductive, "ru_inductive.ptml")

    dfg, dfg_sa, dfg_ea = pm4py.read_dfg("ru_dfg.dfg")
    petri_alpha, im_alpha, fm_alpha = pm4py.read_petri_net("ru_alpha.pnml")
    petri_inductive, im_inductive, fm_inductive = pm4py.read_petri_net(
        "ru_inductive.pnml")
    petri_heuristics, im_heuristics, fm_heuristics = pm4py.read_petri_net(
        "ru_heuristics.pnml")
    tree_inductive = pm4py.read_process_tree("ru_inductive.ptml")

    pm4py.save_vis_petri_net(petri_alpha, im_alpha, fm_alpha, "ru_alpha.png")
    pm4py.save_vis_petri_net(petri_inductive, im_inductive, fm_inductive,
                             "ru_inductive.png")
    pm4py.save_vis_petri_net(petri_heuristics, im_heuristics, fm_heuristics,
                             "ru_heuristics.png")
    pm4py.save_vis_process_tree(tree_inductive, "ru_inductive_tree.png")
    pm4py.save_vis_heuristics_net(heu_net, "ru_heunet.png")
    pm4py.save_vis_dfg(dfg, dfg_sa, dfg_ea, "ru_dfg.png")

    if ENABLE_VISUALIZATION:
        pm4py.view_petri_net(petri_alpha, im_alpha, fm_alpha, format="svg")
        pm4py.view_petri_net(petri_inductive,
                             im_inductive,
                             fm_inductive,
                             format="svg")
        pm4py.view_petri_net(petri_heuristics,
                             im_heuristics,
                             fm_heuristics,
                             format="svg")
        pm4py.view_process_tree(tree_inductive, format="svg")
        pm4py.view_heuristics_net(heu_net, format="svg")
        pm4py.view_dfg(dfg, dfg_sa, dfg_ea, format="svg")

    aligned_traces = pm4py.conformance_alignments(log1, petri_inductive,
                                                  im_inductive, fm_inductive)
    replayed_traces = pm4py.conformance_tbr(log1, petri_inductive,
                                            im_inductive, fm_inductive)

    fitness_tbr = pm4py.evaluate_fitness_tbr(log1, petri_inductive,
                                             im_inductive, fm_inductive)
    print("fitness_tbr", fitness_tbr)
    fitness_align = pm4py.evaluate_fitness_alignments(log1, petri_inductive,
                                                      im_inductive,
                                                      fm_inductive)
    print("fitness_align", fitness_align)
    precision_tbr = pm4py.evaluate_precision_tbr(log1, petri_inductive,
                                                 im_inductive, fm_inductive)
    print("precision_tbr", precision_tbr)
    precision_align = pm4py.evaluate_precision_alignments(
        log1, petri_inductive, im_inductive, fm_inductive)
    print("precision_align", precision_align)

    print("log start activities = ", pm4py.get_start_activities(log2))
    print("df start activities = ", pm4py.get_start_activities(df2))
    print("log end activities = ", pm4py.get_end_activities(log2))
    print("df end activities = ", pm4py.get_end_activities(df2))
    print("log attributes = ", pm4py.get_attributes(log2))
    print("df attributes = ", pm4py.get_attributes(df2))
    print("log org:resource values = ",
          pm4py.get_attribute_values(log2, "org:resource"))
    print("df org:resource values = ",
          pm4py.get_attribute_values(df2, "org:resource"))

    print("start_activities len(filt_log) = ",
          len(pm4py.filter_start_activities(log2, ["register request"])))
    print("start_activities len(filt_df) = ",
          len(pm4py.filter_start_activities(df2, ["register request"])))
    print("end_activities len(filt_log) = ",
          len(pm4py.filter_end_activities(log2, ["pay compensation"])))
    print("end_activities len(filt_df) = ",
          len(pm4py.filter_end_activities(df2, ["pay compensation"])))
    print(
        "attributes org:resource len(filt_log) (cases) cases = ",
        len(
            pm4py.filter_attribute_values(log2,
                                          "org:resource", ["Ellen"],
                                          level="case")))
    print(
        "attributes org:resource len(filt_log) (cases)  events = ",
        len(
            pm4py.filter_attribute_values(log2,
                                          "org:resource", ["Ellen"],
                                          level="event")))
    print(
        "attributes org:resource len(filt_df) (events) cases = ",
        len(
            pm4py.filter_attribute_values(df2,
                                          "org:resource", ["Ellen"],
                                          level="case")))
    print(
        "attributes org:resource len(filt_df) (events) events = ",
        len(
            pm4py.filter_attribute_values(df2,
                                          "org:resource", ["Ellen"],
                                          level="event")))
    print(
        "attributes org:resource len(filt_df) (events) events notpositive = ",
        len(
            pm4py.filter_attribute_values(df2,
                                          "org:resource", ["Ellen"],
                                          level="event",
                                          retain=False)))

    print("variants log = ", pm4py.get_variants(log2))
    print("variants df = ", pm4py.get_variants(df2))
    print(
        "variants filter log = ",
        len(
            pm4py.filter_variants(log2, [[
                "register request", "examine thoroughly", "check ticket",
                "decide", "reject request"
            ]])))
    print(
        "variants filter df = ",
        len(
            pm4py.filter_variants(df2, [[
                "register request", "examine thoroughly", "check ticket",
                "decide", "reject request"
            ]])))
    print("variants filter percentage = ",
          len(pm4py.filter_variants_percentage(log2, threshold=0.8)))

    print(
        "paths filter log len = ",
        len(
            pm4py.filter_directly_follows_relation(
                log2, [("register request", "examine casually")])))
    print(
        "paths filter dataframe len = ",
        len(
            pm4py.filter_directly_follows_relation(
                df2, [("register request", "examine casually")])))

    print(
        "timeframe filter log events len = ",
        len(
            pm4py.filter_time_range(log2,
                                    "2011-01-01 00:00:00",
                                    "2011-02-01 00:00:00",
                                    mode="events")))
    print(
        "timeframe filter log traces_contained len = ",
        len(
            pm4py.filter_time_range(log2,
                                    "2011-01-01 00:00:00",
                                    "2011-02-01 00:00:00",
                                    mode="traces_contained")))
    print(
        "timeframe filter log traces_intersecting len = ",
        len(
            pm4py.filter_time_range(log2,
                                    "2011-01-01 00:00:00",
                                    "2011-02-01 00:00:00",
                                    mode="traces_intersecting")))
    print(
        "timeframe filter df events len = ",
        len(
            pm4py.filter_time_range(df2,
                                    "2011-01-01 00:00:00",
                                    "2011-02-01 00:00:00",
                                    mode="events")))
    print(
        "timeframe filter df traces_contained len = ",
        len(
            pm4py.filter_time_range(df2,
                                    "2011-01-01 00:00:00",
                                    "2011-02-01 00:00:00",
                                    mode="traces_contained")))
    print(
        "timeframe filter df traces_intersecting len = ",
        len(
            pm4py.filter_time_range(df2,
                                    "2011-01-01 00:00:00",
                                    "2011-02-01 00:00:00",
                                    mode="traces_intersecting")))

    # remove the temporary files
    os.remove("ru1.xes")
    os.remove("ru_dfg.dfg")
    os.remove("ru_alpha.pnml")
    os.remove("ru_inductive.pnml")
    os.remove("ru_heuristics.pnml")
    os.remove("ru_inductive.ptml")
    os.remove("ru_alpha.png")
    os.remove("ru_inductive.png")
    os.remove("ru_heuristics.png")
    os.remove("ru_inductive_tree.png")
    os.remove("ru_heunet.png")
    os.remove("ru_dfg.png")