def test_poisson_disk_sampling(self):
        import point_cloud_utils as pcu
        import numpy as np

        # v is a nv by 3 NumPy array of vertices
        # f is an nf by 3 NumPy array of face indexes into v
        # n is a nv by 3 NumPy array of vertex normals
        v, f, n = pcu.read_obj(os.path.join(self.test_path, "cube_twist.obj"))
        bbox = np.max(v, axis=0) - np.min(v, axis=0)
        bbox_diag = np.linalg.norm(bbox)

        # Generate very dense  random samples on the mesh (v, f, n)
        # Note that this function works with no normals, just pass in an empty array np.array([], dtype=v.dtype)
        # v_dense is an array with shape (100*v.shape[0], 3) where each row is a point on the mesh (v, f)
        # n_dense is an array with shape (100*v.shape[0], 3) where each row is a the normal of a point in v_dense
        v_dense, n_dense = pcu.sample_mesh_random(v, f, n, num_samples=v.shape[0] * 100)

        # Downsample v_dense to be from a blue noise distribution:
        #
        # v_poisson is a downsampled version of v where points are separated by approximately
        # `radius` distance, use_geodesic_distance indicates that the distance should be measured on the mesh.
        #
        # n_poisson are the corresponding normals of v_poisson
        v_poisson, n_poisson = pcu.sample_mesh_poisson_disk(
            v_dense, f, n_dense, radius=0.01 * bbox_diag, use_geodesic_distance=True)
def sample_pointcloud_mesh(obj_path):
    off_v, off_f, off_n = pcu.read_obj(obj_path)
    if off_n.shape[0] != off_v.shape[0]:
        off_n = np.array([])
    v_dense, n_dense = pcu.sample_mesh_random(off_v,
                                              off_f,
                                              off_n,
                                              num_samples=point_num)
    return v_dense
Exemple #3
0
    def test_estimate_point_cloud_normals(self):
        import point_cloud_utils as pcu
        import numpy as np

        # v is a nv by 3 NumPy array of vertices
        # f is an nf by 3 NumPy array of face indexes into v
        # n is a nv by 3 NumPy array of vertex normals if they are specified, otherwise an empty array
        v, f, n = pcu.read_obj(os.path.join(self.test_path, "cube_twist.obj"))

        # Estimate normals for the point set, v using 12 nearest neighbors per point
        n = pcu.estimate_point_cloud_normals(v, k=12)
        self.assertEqual(n.shape, v.shape)
    def test_lloyd_relaxation(self):
        import point_cloud_utils as pcu

        # v is a nv by 3 NumPy array of vertices
        # f is an nf by 3 NumPy array of face indexes into v
        v, f, n = pcu.read_obj(os.path.join(self.test_path, "cube_twist.obj"))

        # Generate 1000 points on the mesh with Lloyd's algorithm
        samples = pcu.sample_mesh_lloyd(v, f, 1000)

        # Generate 100 points on the unit square with Lloyd's algorithm
        samples_2d = pcu.lloyd_2d(100)
Exemple #5
0
def load_mesh_by_file_extension(file_name):
    """
    Load a mesh stored in a OBJ, OFF, or PLY file and return a Numpy array of the vertex positions.
    I.e. an array with shape [n, 3] where each row [i, :] is a vertex position
    :param file_name: The name of the mesh file to load
    :return: An [n, 3] array of vertex positions
    """
    if file_name.endswith(".obj"):
        v, f, n = pcu.read_obj(file_name, dtype=np.float32)
    elif file_name.endswith(".ply"):
        v, f, n, uv = pcu.read_ply(file_name, dtype=np.float32)
    elif file_name.endswith(".off"):
        v, f, n = pcu.read_off(file_name, dtype=np.float32)
    else:
        raise ValueError("Input mesh file must end in .ply, .obj, or .off")

    return v
Exemple #6
0
def load_point_cloud_by_file_extension(file_name, compute_normals=False):
    import point_cloud_utils as pcu
    if file_name.endswith(".obj"):
        v, f, n = pcu.read_obj(file_name, dtype=np.float32)
    elif file_name.endswith(".off"):
        v, f, n = pcu.read_off(file_name, dtype=np.float32)
    elif file_name.endswith(".ply"):
        v, f, n, _ = pcu.read_ply(file_name, dtype=np.float32)
    elif file_name.endswith(".npts"):
        v, n = load_srb_range_scan(file_name)
        f = []
    else:
        raise ValueError(
            "Invalid file extension must be one of .obj, .off, .ply, or .npts")

    if compute_normals and f.shape[0] > 0:
        n = pcu.per_vertex_normals(v, f)
    return v, n
Exemple #7
0
    def test_downsample_point_cloud_voxel_grid(self):
        import point_cloud_utils as pcu
        import numpy as np

        # v is a nv by 3 NumPy array of vertices
        # f is an nf by 3 NumPy array of face indexes into v
        # n is a nv by 3 NumPy array of vertex normals if they are specified, otherwise an empty array
        v, f, n = pcu.read_obj(os.path.join(self.test_path, "cube_twist.obj"))
        bbox = np.max(v, axis=0) - np.min(v, axis=0)
        bbox_diag = np.linalg.norm(bbox)
        vox_grid_size = 1.0 / 128.0

        # Make sure we have normals
        self.assertEqual(n.shape, v.shape)

        # Vanilla case
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v)
        self.assertIsNone(nms)
        self.assertIsNone(clr)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With normals
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n)
        self.assertIsNone(clr)
        self.assertEqual(nms.shape, pts.shape)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With RBG colors
        c = np.random.rand(v.shape[0], 3)
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, None, c)
        self.assertIsNone(nms)
        self.assertEqual(clr.shape, pts.shape)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With RBGA colors
        c = np.random.rand(v.shape[0], 4)
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, None, c)
        self.assertIsNone(nms)
        self.assertEqual(clr.shape[0], pts.shape[0])
        self.assertEqual(clr.shape[1], 4)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With normals and RGB colors
        c = np.random.rand(v.shape[0], 3)
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)
        self.assertEqual(nms.shape, pts.shape)
        self.assertEqual(clr.shape, pts.shape)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With normals and RBGA colors
        c = np.random.rand(v.shape[0], 4)
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)
        self.assertEqual(nms.shape, pts.shape)
        self.assertEqual(clr.shape[0], pts.shape[0])
        self.assertEqual(clr.shape[1], 4)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With different voxel size per axis
        vox_grid_size = [1.0/128.0, 1.0/99.0, 1.0/222.0]
        c = np.random.rand(v.shape[0], 4)
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)
        self.assertEqual(nms.shape, pts.shape)
        self.assertEqual(clr.shape[0], pts.shape[0])
        self.assertEqual(clr.shape[1], 4)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # With bounding box dimensions
        vox_grid_size = np.array([1.0/128.0, 1.0/99.0, 1.0/222.0])
        min_bound = np.min(v, axis=0) - 0.5 * np.array(vox_grid_size)
        max_bound = np.max(v, axis=0) + 0.5 * np.array(vox_grid_size)
        c = np.random.rand(v.shape[0], 4)
        pts, nms, clr = pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c,
                                                              min_bound=min_bound, max_bound=max_bound)
        self.assertEqual(nms.shape, pts.shape)
        self.assertEqual(clr.shape[0], pts.shape[0])
        self.assertEqual(clr.shape[1], 4)
        self.assertGreater(pts.shape[0], 0)
        self.assertEqual(pts.shape[1], 3)

        # Should raise if the voxel size is too small
        with self.assertRaises(ValueError):
            vox_grid_size = [1e-16, 1.0/99.0, 1.0/222.0]
            c = np.random.rand(v.shape[0], 4)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)

        # Should raise if the voxel size is negative
        with self.assertRaises(ValueError):
            vox_grid_size = [1.0/100.0, -1.0/99.0, 1.0/222.0]
            c = np.random.rand(v.shape[0], 4)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)

        # Invalid color dimension
        with self.assertRaises(ValueError):
            c = np.random.rand(v.shape[0], 2)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)

        # Invalid normal dimension
        with self.assertRaises(ValueError):
            c = np.random.rand(v.shape[0], 2)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n[:, :1], c)

        # Invalid number of normals
        with self.assertRaises(ValueError):
            c = np.random.rand(v.shape[0], 3)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n[1:, :], c)

        # Invalid number of colors
        with self.assertRaises(ValueError):
            c = np.random.rand(v.shape[0]//2, 3)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c)

        # Negative bounding box
        with self.assertRaises(ValueError):
            min_bound = np.min(v, axis=0) - 0.5 * np.array(vox_grid_size)
            max_bound = np.max(v, axis=0) + 0.5 * np.array(vox_grid_size)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c, max_bound=min_bound, min_bound=max_bound)

        # Badly shaped grid size
        with self.assertRaises(ValueError):
            vox_grid_size = [1.0/100.0, 1.0/99.0]
            min_bound = np.min(v, axis=0) - 0.5 * np.array(vox_grid_size)
            max_bound = np.max(v, axis=0) + 0.5 * np.array(vox_grid_size)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c, max_bound=max_bound, min_bound=min_bound)

        # Badly shaped max bound
        with self.assertRaises(ValueError):
            vox_grid_size = [1.0/100.0, 1.0/99.0, 1.0/77.0]
            min_bound = np.min(v, axis=0) - 0.5 * np.array(vox_grid_size)
            max_bound = np.max(v, axis=0) + 0.5 * np.array(vox_grid_size)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c, max_bound=max_bound[:1], min_bound=min_bound)

        # Badly shaped max bound
        with self.assertRaises(ValueError):
            vox_grid_size = [1.0/100.0, 1.0/99.0, 1.0/77.0]
            min_bound = np.min(v, axis=0) - 0.5 * np.array(vox_grid_size)
            max_bound = np.max(v, axis=0) + 0.5 * np.array(vox_grid_size)
            pcu.downsample_point_cloud_voxel_grid(vox_grid_size, v, n, c, max_bound=max_bound[:1], min_bound=(1.0, 1.0))
Exemple #8
0
    def test_mesh_sampling(self):
        import point_cloud_utils as pcu
        import numpy as np

        # v is a nv by 3 NumPy array of vertices
        # f is an nf by 3 NumPy array of face indexes into v
        # n is a nv by 3 NumPy array of vertex normals if they are specified, otherwise an empty array
        v, f, n = pcu.read_obj(os.path.join(self.test_path, "cube_twist.obj"))
        bbox = np.max(v, axis=0) - np.min(v, axis=0)
        bbox_diag = np.linalg.norm(bbox)

        f_idx1, bc1 = pcu.sample_mesh_random(v, f, num_samples=1000, random_seed=1234567)
        f_idx2, bc2 = pcu.sample_mesh_random(v, f, num_samples=1000, random_seed=1234567)
        f_idx3, bc3 = pcu.sample_mesh_random(v, f, num_samples=1000, random_seed=7654321)
        self.assertTrue(np.all(f_idx1 == f_idx2))
        self.assertTrue(np.all(bc1 == bc2))
        self.assertFalse(np.all(f_idx1 == f_idx3))
        self.assertFalse(np.all(bc1 == bc3))

        # Generate very dense  random samples on the mesh (v, f)
        f_idx, bc = pcu.sample_mesh_random(v, f, num_samples=v.shape[0] * 4)
        v_dense = (v[f[f_idx]] * bc[:, np.newaxis]).sum(1)

        s_idx = pcu.downsample_point_cloud_poisson_disk(v_dense, 0, 0.1*bbox_diag, random_seed=1234567)
        s_idx2 = pcu.downsample_point_cloud_poisson_disk(v_dense, 0, 0.1*bbox_diag, random_seed=1234567)
        s_idx3 = pcu.downsample_point_cloud_poisson_disk(v_dense, 0, 0.1 * bbox_diag, random_seed=7654321)
        self.assertTrue(np.all(s_idx == s_idx2))
        if s_idx3.shape == s_idx.shape:
            self.assertFalse(np.all(s_idx == s_idx3))
        else:
            self.assertFalse(s_idx.shape == s_idx3.shape)

        # Ensure we can request more samples than vertices and get something reasonable
        s_idx_0 = pcu.downsample_point_cloud_poisson_disk(v_dense, 2*v_dense.shape[0], random_seed=1234567)

        s_idx = pcu.downsample_point_cloud_poisson_disk(v_dense, 1000, random_seed=1234567)
        s_idx2 = pcu.downsample_point_cloud_poisson_disk(v_dense, 1000, random_seed=1234567)
        s_idx3 = pcu.downsample_point_cloud_poisson_disk(v_dense, 1000, random_seed=7654321)
        self.assertTrue(np.all(s_idx == s_idx2))
        if s_idx3.shape == s_idx.shape:
            self.assertFalse(np.all(s_idx == s_idx3))
        else:
            self.assertFalse(s_idx.shape == s_idx3.shape)

        f_idx1, bc1 = pcu.sample_mesh_poisson_disk(v, f, num_samples=1000,
                                                   random_seed=1234567, use_geodesic_distance=True,
                                                   oversampling_factor=5.0)
        f_idx2, bc2 = pcu.sample_mesh_poisson_disk(v, f, num_samples=1000,
                                                   random_seed=1234567, use_geodesic_distance=True,
                                                   oversampling_factor=5.0)
        f_idx3, bc3 = pcu.sample_mesh_poisson_disk(v, f, num_samples=1000,
                                                   random_seed=7654321, use_geodesic_distance=True,
                                                   oversampling_factor=5.0)
        self.assertTrue(np.all(f_idx1 == f_idx2))
        self.assertTrue(np.all(bc1 == bc2))
        if f_idx1.shape == f_idx3.shape:
            self.assertFalse(np.all(f_idx1 == f_idx3))
        if bc1.shape == bc3.shape:
            self.assertFalse(np.all(bc1 == bc3))

        f_idx1, bc1 = pcu.sample_mesh_poisson_disk(v, f, num_samples=-1, radius=0.01*bbox_diag,
                                                   random_seed=1234567, oversampling_factor=5.0)
        f_idx2, bc2 = pcu.sample_mesh_poisson_disk(v, f, num_samples=-1, radius=0.01*bbox_diag,
                                                   random_seed=1234567, oversampling_factor=5.0)
        f_idx3, bc3 = pcu.sample_mesh_poisson_disk(v, f, num_samples=-1, radius=0.01*bbox_diag,
                                                   random_seed=7654321, oversampling_factor=5.0)
        self.assertTrue(np.all(f_idx1 == f_idx2))
        self.assertTrue(np.all(bc1 == bc2))
        if f_idx1.shape == f_idx3.shape:
            self.assertFalse(np.all(f_idx1 == f_idx3))
        if bc1.shape == bc3.shape:
            self.assertFalse(np.all(bc1 == bc3))
Exemple #9
0
filenames = [f for f in files_in_subdirs(args.dataset_path, args.termination)]
for i, fi in enumerate(filenames):
    path = os.path.split(fi)[0]
    foldername = path.replace(args.dataset_path + '/', '')
    name = os.path.split(fi)[-1].split('.')[0]
    if args.save_path == 'None':
        args.save_path = os.path.split(
            args.dataset_path)[0] + '/' + os.path.split(
                args.dataset_path)[1] + '_resampled'

    if not os.path.exists(args.save_path): os.makedirs(args.save_path)
    if os.path.split(foldername)[-1] == args.dataset_path.split(
            '/')[-1]:  #Single folder structure
        destination_filename = args.save_path + '/' + name
    else:
        if not os.path.exists(args.save_path + '/' + foldername):
            os.makedirs(args.save_path + '/' + foldername)
        destination_filename = args.save_path + '/' + foldername + '/' + name

    if args.termination == '.off':
        v, f, n = pcu.read_off(fi)
    elif args.termination == '.obj':
        v, f, n = pcu.read_obj(fi)
    else:
        print('Invalid termination')
        sys.exit(1)
    if len(f) != 0:
        samples = pcu.sample_mesh_lloyd(
            v, f, args.n_points)  #normals inside v, poorly saved
        np.save(destination_filename + '.npy', samples)
Exemple #10
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 25 11:21:05 2020

@author: tamir
"""
import os
import numpy as np
import point_cloud_utils as pcu

THIS_DIR = os.path.dirname(os.path.abspath(__file__))
points = os.path.join(THIS_DIR, "data/point_cloud.obj")

# v is a nv by 3 NumPy array of vertices
v, f, n = pcu.read_obj(points)

# Estimate a normal at each point (row of v) using its 5 nearest neighbors
n = pcu.estimate_normals(v, k=5)

np.testing.assert_allclose(n[0],
                           np.asarray([0.96283305, 0.11186423, 0.24584327]))