split='test',
                    data_augmentation=False)

idx = opt.idx

print("model %d/%d" % (idx, len(d)))
point, seg = d[idx]
print(point.size(), seg.size())
point_np = point.numpy()

cmap = plt.cm.get_cmap("hsv", 10)
cmap = np.array([cmap(i) for i in range(10)])[:, :3]
gt = cmap[seg.numpy() - 1, :]

state_dict = torch.load(opt.model, map_location=torch.device('cpu'))
classifier = PointNetDenseCls(k=state_dict['conv4.weight'].size()[0])
classifier.load_state_dict(state_dict)
classifier.eval()

point = point.transpose(1, 0).contiguous()

point = Variable(point.view(1, point.size()[0], point.size()[1]))
pred, _, _ = classifier(point)
pred_choice = pred.data.max(2)[1]
print(pred_choice)

#print(pred_choice.size())
pred_color = cmap[pred_choice.numpy()[0], :]

#print(pred_color.shape)
showpoints(point_np, gt, pred_color)
Exemple #2
0
                                             batch_size=opt.batchSize,
                                             shuffle=True,
                                             num_workers=int(opt.workers))

print(len(dataset), len(test_dataset))  #打印数据集和测试集的对象个数
num_classes = dataset.num_seg_classes  #从misc/num_seg_classes.txt读取分割个数
print('classes', num_classes)  #例如chair的分割个数是4
try:
    os.makedirs(opt.outf)  #用于递归创建目录
except OSError:
    pass

blue = lambda x: '\033[94m' + x + '\033[0m'  #在训练时,将test设置成蓝色字底

classifier = PointNetDenseCls(
    k=num_classes,
    feature_transform=opt.feature_transform)  #读取model.py的densecls函数

if opt.model != '':
    classifier.load_state_dict(torch.load(opt.model))  #如果有预训练模型,加载预训练模型

optimizer = optim.Adam(classifier.parameters(), lr=0.001,
                       betas=(0.9, 0.999))  #优化器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
classifier.cuda()

num_batch = len(dataset) / opt.batchSize  #数据集分成batch的个数

for epoch in range(opt.nepoch):  #执行一个epoch
    scheduler.step()
    for i, data in enumerate(dataloader, 0):  #enumerate枚举
testdataloader = torch.utils.data.DataLoader(test_dataset,
                                             batch_size=opt.batchSize,
                                             shuffle=True,
                                             num_workers=int(opt.workers))

print(len(dataset), len(test_dataset))
num_classes = dataset.num_seg_classes
print('classes', num_classes)
try:
    os.makedirs(opt.outf)
except OSError:
    pass

blue = lambda x: '\033[94m' + x + '\033[0m'

classifier = PointNetDenseCls(k=num_classes,
                              feature_transform=opt.feature_transform)

if opt.model != '':
    classifier.load_state_dict(torch.load(opt.model))

optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
classifier.cuda()

num_batch = len(dataset) / opt.batchSize

for epoch in range(opt.nepoch):
    scheduler.step()
    for i, data in enumerate(dataloader, 0):
        points, target = data
        points = points.transpose(2, 1)
testdataloader = torch.utils.data.DataLoader(test_dataset,
                                             batch_size=opt.batchsize,
                                             shuffle=True,
                                             num_workers=int(opt.workers))

print(len(dataset), len(test_dataset))

try:
    os.makedirs(opt.outf)
except OSError:
    pass

blue = lambda x: '\033[94m' + x + '\033[0m'
device = opt.device

netG = PointNetDenseCls(device=device, feature_transform=opt.feature_transform)
localD = LocalDiscriminator(k=2, device=device)
globalD = GlobalDiscriminator(k=2, device=device)

if opt.model != '':
    netG.load_state_dict(torch.load(opt.model))

optimizerG = optim.Adam(netG.parameters(), lr=0.001, betas=(0.9, 0.999))
optimizerD = optim.Adam(list(globalD.parameters()) + list(localD.parameters()),
                        lr=0.0005,
                        betas=(0.9, 0.999))

schedulerG = optim.lr_scheduler.StepLR(optimizerG, step_size=20, gamma=0.5)
schedulerD = optim.lr_scheduler.StepLR(optimizerD, step_size=20, gamma=0.5)

netG.to(device)
Exemple #5
0
def train(lr=0.001):
    parser = argparse.ArgumentParser()
    opt = parser.parse_args()
    opt.nepoch = 1
    opt.batchsize = 18
    opt.workers = 0
    opt.outf = 'completion'
    opt.dataset = '/home/cdi0/data/shape_net_core_uniform_samples_2048_split/'
    opt.feature_transform = False
    opt.model = ''
    opt.device = 'cuda:1'
    opt.lr = lr

    opt.manualSeed = random.randint(1, 10000)  # fix seed
    print("Random Seed: ", opt.manualSeed)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    dataset = ShapeNetDataset(dir=opt.dataset, )
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=opt.batchsize,
                                             shuffle=True,
                                             num_workers=int(opt.workers))

    test_dataset = ShapeNetDataset(
        dir=opt.dataset,
        train='test',
    )
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=opt.batchsize,
                                                 shuffle=True,
                                                 num_workers=int(opt.workers))

    print(len(dataset), len(test_dataset))

    #try:
    #    os.makedirs(opt.outf)
    #except OSError:
    #    pass

    blue = lambda x: '\033[94m' + x + '\033[0m'
    device = opt.device

    netG = PointNetDenseCls(device=device,
                            feature_transform=opt.feature_transform)
    localD = LocalDiscriminator(k=2, device=device)
    globalD = GlobalDiscriminator(k=2, device=device)

    if opt.model != '':
        netG.load_state_dict(torch.load(opt.model))

    optimizerG = optim.Adam(netG.parameters(), lr=0.001, betas=(0.9, 0.999))
    optimizerD = optim.Adam(list(globalD.parameters()) +
                            list(localD.parameters()),
                            lr=0.001,
                            betas=(0.9, 0.999))

    schedulerG = optim.lr_scheduler.StepLR(optimizerG, step_size=20, gamma=0.5)
    schedulerD = optim.lr_scheduler.StepLR(optimizerD, step_size=20, gamma=0.5)

    netG.to(device)
    localD.to(device)
    globalD.to(device)

    criterion = distChamfer
    Dcriterion = nn.BCELoss()
    #Dcriterion = F.nll_loss

    real_label = 1
    fake_label = 0

    num_batch = len(dataset) / opt.batchsize
    writer = SummaryWriter()
    for epoch in range(opt.nepoch):
        for i, data in (enumerate(dataloader, 0)):
            #k = 614
            points, target, mask = data  # Nx4 or Nx3
            points = points.transpose(2, 1)  # 4xN
            points, target = points.to(device, dtype=torch.float), target.to(
                device, dtype=torch.float)
            b_size = points.shape[0]

            mask_ = mask.unsqueeze(2).repeat(1, 1, 3)
            #print(mask_.any(dim = 2).sum(dim=1))
            mask__ = ~mask_
            #print(mask__.any(dim = 2).sum(dim=1))
            mask__ = mask__.to(device, dtype=torch.float32)
            mask_ = mask_.to(device, dtype=torch.float32)

            optimizerD.zero_grad()

            localD = localD.train()
            globalD = globalD.train()

            ###### train D ######

            #label_real =  torch.stack((torch.zeros(b_size),torch.ones(b_size)), dim = 1).to(device, dtype = torch.long)
            #label_fake =  torch.stack((torch.ones(b_size),torch.zeros(b_size)), dim = 1).to(device, dtype = torch.long)

            label = torch.full((b_size, ), real_label, device=device)

            #print(mask__)
            #print(mask__[mask__.sum(dim=2) != 0].shape)
            target_mask = mask__ * target
            target_mask = target_mask[torch.abs(target_mask).sum(
                dim=2) != 0].view(b_size, -1, 3)

            target, target_mask = target.transpose(
                2, 1).contiguous(), target_mask.transpose(2, 1).contiguous()

            output_g = globalD(target)
            output_l = localD(target_mask)

            #rint(output_g.shape)
            #rint(output_l.shape)
            #rint(label.shape)

            errD_real_g = Dcriterion(output_g, label)
            errD_real_l = Dcriterion(output_l, label)

            errD_real = errD_real_g + errD_real_l
            errD_real.backward()

            target = target.transpose(2, 1).contiguous()

            pred = netG(points)

            #rint(pred.shape)
            ##int(target.shape)
            #rint(mask_.shape)
            #rint(mask__.shape)

            pred = (pred * mask__) + (target * mask_)

            pred_mask = pred * mask__
            pred_mask = pred_mask[torch.abs(pred_mask).sum(dim=2) != 0].view(
                b_size, -1, 3)

            pred, pred_mask = pred.transpose(
                2, 1).contiguous(), pred_mask.transpose(2, 1).contiguous()

            output_g = globalD(pred.detach())
            output_l = localD(pred_mask.detach())

            label.fill_(fake_label)

            errD_fake_g = Dcriterion(output_g, label)
            errD_fake_l = Dcriterion(output_l, label)

            errD_fake = errD_fake_g + errD_fake_l
            errD_fake.backward()

            errD = errD_real + errD_fake

            if errD.item() > 0.1:
                optimizerD.step()

            ###### train G ######

            optimizerG.zero_grad()
            optimizerD.zero_grad()

            netG = netG.train()

            output_g = globalD(pred)
            output_l = localD(pred_mask)

            label.fill_(real_label)

            errG_g = Dcriterion(output_g, label)
            errG_l = Dcriterion(output_l, label)

            errG = errG_g + errG_l

            pred = pred.transpose(2, 1).contiguous()

            #rint(pred.shape)
            #rint(target.shape)

            dist1, dist2 = criterion(pred, target)
            chamferloss = (torch.mean(dist1)) + (torch.mean(dist2))
            loss = chamferloss + errG

            loss.backward()

            if opt.feature_transform:
                loss += feature_transform_regularizer(trans_feat) * 0.001

            optimizerG.step()

            print('[%d: %d/%d] D_loss: %f, G_loss: %f, Chamfer_loss: %f ' %
                  (epoch, i, num_batch, errD.item(), errG.item(),
                   chamferloss.item()))

            if i % 10 == 0:
                j, data = next(enumerate(testdataloader, 0))
                points, target, mask = data
                points = points.transpose(2, 1)
                points, target = points.to(
                    device, dtype=torch.float), target.to(device,
                                                          dtype=torch.float)

                b_size = points.shape[0]

                localD = localD.eval()
                globalD = globalD.eval()

                ###### eval D ######
                label = torch.full((b_size, ), real_label, device=device)
                #label_real =  torch.stack((torch.zeros(b_size),torch.ones(b_size)), dim = 1).to(device)
                #label_fake =  torch.stack((torch.ones(b_size),torch.zeros(b_size)), dim = 1).to(device)

                mask_ = mask.unsqueeze(2).repeat(1, 1, 3)
                mask__ = ~mask_
                mask__ = mask__.to(device, dtype=torch.float32)
                mask_ = mask_.to(device, dtype=torch.float32)

                target_mask = mask__ * target
                target_mask = target_mask[torch.abs(target_mask).sum(
                    dim=2) != 0].view(b_size, -1, 3)

                target, target_mask = target.transpose(
                    2, 1).contiguous(), target_mask.transpose(2,
                                                              1).contiguous()

                output_g = globalD(target)
                output_l = localD(target_mask)

                errD_real_g_eval = Dcriterion(output_g, label)
                errD_real_l_eval = Dcriterion(output_l, label)

                errD_real_eval = errD_real_g_eval + errD_real_l_eval

                target = target.transpose(2, 1).contiguous()

                pred = netG(points)
                pred = (pred * mask__) + (target * mask_)

                pred_mask = pred * mask__
                pred_mask = pred_mask[torch.abs(pred_mask).sum(
                    dim=2) != 0].view(b_size, -1, 3)

                pred, pred_mask = pred.transpose(
                    2, 1).contiguous(), pred_mask.transpose(2, 1).contiguous()

                output_g_eval = globalD(pred.detach())
                output_l_eval = localD(pred_mask.detach())

                label.fill_(fake_label)

                errD_fake_g_eval = Dcriterion(output_g, label)
                errD_fake_l_eval = Dcriterion(output_l, label)

                errD_fake_eval = errD_fake_g_eval + errD_fake_l_eval

                errD_eval = errD_real_eval + errD_fake_eval

                ###### eval G ######

                netG = netG.eval()

                output_g = globalD(pred)
                output_l = localD(pred_mask)

                label.fill_(real_label)

                errG_g_eval = Dcriterion(output_g, label)
                errG_l_eval = Dcriterion(output_l, label)

                errG_eval = errG_g_eval + errG_l_eval

                pred = pred.transpose(2, 1).contiguous()

                dist1, dist2 = criterion(pred, target)
                chamferloss_eval = (torch.mean(dist1)) + (torch.mean(dist2))
                loss_eval = chamferloss_eval + errG_eval

                print('[%d: %d/%d] %s D_loss: %f, G_loss: %f ' %
                      (epoch, i, num_batch, blue('test'), errD_eval.item(),
                       loss.item()))

            if i % 100 == 0:
                n = int(i / 100)
                writer.add_scalar('errD_real', errD_real.item(),
                                  27 * epoch + n)
                writer.add_scalar('errD_fake', errD_fake.item(),
                                  27 * epoch + n)
                writer.add_scalar('errD_loss', errD.item(), 27 * epoch + n)

                writer.add_scalar('validation errD_real',
                                  errD_real_eval.item(), 27 * epoch + n)
                writer.add_scalar('validation errD_fake',
                                  errD_fake_eval.item(), 27 * epoch + n)
                writer.add_scalar('validation errD_loss', errD_eval.item(),
                                  27 * epoch + n)

                writer.add_scalar('errG_global', errG_g.item(), 27 * epoch + n)
                writer.add_scalar('errG_local', errG_l.item(), 27 * epoch + n)
                writer.add_scalar('chamfer_loss', chamferloss.item(),
                                  27 * epoch + n)
                writer.add_scalar('errG_loss', loss.item(), 27 * epoch + n)

                writer.add_scalar('validation errG_global', errG_g_eval.item(),
                                  27 * epoch + n)
                writer.add_scalar('validation errG_local', errG_l_eval.item(),
                                  27 * epoch + n)
                writer.add_scalar('validation chamfer_loss',
                                  chamferloss_eval.item(), 27 * epoch + n)
                writer.add_scalar('validation errG_loss', loss_eval.item(),
                                  27 * epoch + n)

                for name, param in globalD.named_parameters():
                    writer.add_histogram(name,
                                         param.clone().cpu().data.numpy(),
                                         27 * epoch + n)
                for name, param in localD.named_parameters():
                    writer.add_histogram(name,
                                         param.clone().cpu().data.numpy(),
                                         27 * epoch + n)
                for name, param in netG.named_parameters():
                    writer.add_histogram(name,
                                         param.clone().cpu().data.numpy(),
                                         27 * epoch + n)

        schedulerG.step()
        schedulerD.step()
        #torch.save(netG.state_dict(), '%s/com_model_G_%f_%d.pth' % (opt.outf, loss.item(), epoch))
        #torch.save(localD.state_dict(), '%s/com_model_localD_%f_%d.pth' % (opt.outf, errD.item(), epoch))
        #torch.save(globalD.state_dict(), '%s/com_model_globalD_%f_%d.pth' % (opt.outf, errD.item(), epoch))
    return errD.item(), errG, chamferloss
print(opt)

d = ShapeNetDataset(
    dir=opt.dataset,
    train='test',
)
device = opt.device
idx = opt.idx
print(d.lst[idx])
print("model %d/%d" % (idx, len(d)))
point, target, mask = d[idx]
print(point.shape, target.shape)
#point_np = point.numpy()

state_dict = torch.load(opt.model, map_location='cpu')
classifier = PointNetDenseCls(device=device)
classifier.load_state_dict(state_dict)
classifier.to(device)
classifier.eval()

input_cloud = PyntCloud(
    pd.DataFrame(
        # same arguments that you are passing to visualize_pcl
        data=point[:, :3],
        columns=["x", "y", "z"]))
input_cloud.to_file("input.ply")

target_cloud = PyntCloud(
    pd.DataFrame(
        # same arguments that you are passing to visualize_pcl
        data=target,
                                                 batch_size=opt.batchSize,
                                                 shuffle=True,
                                                 num_workers=int(opt.workers),
                                                 drop_last=True)

    print(len(dataset), len(test_dataset))
    num_classes = dataset.num_seg_classes
    print('classes', num_classes)
    try:
        os.makedirs(opt.outf)
    except OSError:
        pass

    blue = lambda x: '\033[94m' + x + '\033[0m'

    classifier = PointNetDenseCls(k=num_classes,
                                  feature_transform=opt.feature_transform)
    if opt.gpu != -1:
        classifier = torch.nn.DataParallel(classifier).to(device)
    else:
        classifier.to(device)

    if opt.model != '':
        classifier.load_state_dict(torch.load(opt.model))

    optimizer = optim.Adam(classifier.parameters(),
                           lr=0.001,
                           betas=(0.9, 0.999))
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)

    num_batch = len(dataset) / opt.batchSize
Exemple #8
0
    data_augmentation=False)
testdataloader = torch.utils.data.DataLoader(
    test_dataset,
    batch_size=opt.batchSize,
    shuffle=True,
    num_workers=int(opt.workers))

print(len(dataset), len(test_dataset))
num_classes = dataset.num_seg_classes
print('classes', num_classes)
try:
    os.makedirs(opt.outf)
except OSError:
    pass

classifier = PointNetDenseCls(k=num_classes, feature_transform=opt.feature_transform)

if opt.model != '':
    classifier.load_state_dict(torch.load(opt.model))

optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
classifier.cuda()

num_batch = len(dataset) / opt.batchSize


def get_iou(pred_np, target_np):
    shape_ious = []
    for shape_idx in range(target_np.shape[0]):
        parts = range(num_classes)  # np.unique(target_np[shape_idx])
Exemple #9
0
dataset = ShapeNetDataset(root=dataset_path,
                          classification=False,
                          class_choice=[class_choice])

test_dataset = ShapeNetDataset(root=dataset_path,
                               classification=False,
                               class_choice=[class_choice],
                               split='test',
                               data_augmentation=False)

# print(len(dataset), len(test_dataset))
num_classes = dataset.num_seg_classes
print('segmentation classes', num_classes)

classifier = PointNetDenseCls(k=num_classes, feature_transform=False)

model_path = 'trained/seg/seg_model_' + 'Chair_' + str(model_num) + '.pth'
classifier.load_state_dict(torch.load(model_path))

classifier.cuda()

#%%
points, target = dataset[data_num]
points.unsqueeze_(0)
target.unsqueeze_(0)
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
classifier = classifier.eval()
pred, _, _ = classifier(points)
pred_choice = pred.data.max(2)[1]
Exemple #10
0
             train=False,
             test_area='Area_6')

idx = 100

print("model %d/%d" % (idx, len(data)))

point, seg = data[idx]
print(point.size(), seg.size())

point_np = point.numpy()

#forward
num = 13
print('num={}'.format(num))
classifier = PointNetDenseCls(k=num)
classifier.load_state_dict(torch.load(opt.model))
classifier.eval()

point = point.transpose(1, 0).contiguous()

point = Variable(point.view(1, point.size()[0], point.size()[1]))
pred, _ = classifier(point)

print(pred.size())
pred_choice = pred.data.max(2)[1]
print(pred_choice.size())
print(point.size())
# print(point[0, :, 0])
point = point.squeeze()
# print(point[:, 0])