def train(processed_dir, save_file=None, epochs=10, logdir=None, checkpoint_freq=10000): test_dataset = DataSet.read(os.path.join(processed_dir, "test.chunk.gz")) train_chunk_files = [ os.path.join(processed_dir, fname) for fname in os.listdir(processed_dir) if TRAINING_CHUNK_RE.match(fname) ] save_file = os.path.join(os.getcwd(), save_file) n = PolicyNetwork() try: n.initialize_variables(save_file) except: n.initialize_variables(None) if logdir is not None: n.initialize_logging(logdir) last_save_checkpoint = 0 for i in range(epochs): random.shuffle(train_chunk_files) for file in train_chunk_files: print("Using %s" % file) train_dataset = DataSet.read(file) train_dataset.shuffle() with timer("training"): n.train(train_dataset) n.save_variables(save_file) if n.get_global_step() > last_save_checkpoint + checkpoint_freq: with timer("test set evaluation"): n.check_accuracy(test_dataset) last_save_checkpoint = n.get_global_step()
def train(processed_dir="processed_data"): checkpoint_freq = 10000 read_file = None save_file = 'tmp2' epochs = 10 logdir = 'logs2' # test_dataset = DataSet.read(os.path.join(processed_dir, "test.chunk.gz")) train_chunk_files = [ os.path.join(processed_dir, fname) for fname in os.listdir(processed_dir) if TRAINING_CHUNK_RE.match(fname) ] if read_file is not None: read_file = os.path.join(os.getcwd(), save_file) n = PolicyNetwork() n.initialize_variables(read_file) if logdir is not None: n.initialize_logging(logdir) last_save_checkpoint = 0 for i in range(epochs): random.shuffle(train_chunk_files) for file in train_chunk_files: print("提取 %s" % file) with timer("load dataset"): train_dataset = DataSet.read(file) with timer("training"): n.train(train_dataset) with timer("save model"): n.save_variables(save_file) if n.get_global_step() > last_save_checkpoint + checkpoint_freq: with timer("test set evaluation"): n.check_accuracy(test_dataset) last_save_checkpoint = n.get_global_step()
def train(processed_dir, read_file=None, save_file=None, epochs=10, logdir=None, checkpoint_freq=10000): test_dataset = DataSet.read(os.path.join(processed_dir, "test.chunk.gz")) train_chunk_files = [ os.path.join(processed_dir, fname) for fname in os.listdir(processed_dir) if TRAINING_CHUNK_RE.match(fname) ] n = PolicyNetwork(DEFAULT_FEATURES.planes) n.initialize_variables(read_file) if logdir is not None: n.initialize_logging(logdir) last_save_checkpoint = 0 for i in range(epochs): random.shuffle(train_chunk_files) for file in train_chunk_files: print("Using %s" % file) train_dataset = DataSet.read(file) n.train(train_dataset) if save_file is not None and n.get_global_step( ) > last_save_checkpoint + checkpoint_freq: n.check_accuracy(test_dataset) print("Saving checkpoint to %s" % save_file, file=sys.stderr) last_save_checkpoint = n.get_global_step() n.save_variables(save_file) if save_file is not None: n.save_variables(save_file) print("Finished training. New model saved to %s" % save_file, file=sys.stderr)
def train(processed_dir, read_file=None, save_file=None, epochs=10, logdir=None, checkpoint_freq=10000): test_dataset = DataSet.read(os.path.join(processed_dir, "test.chunk.gz")) train_chunk_files = [os.path.join(processed_dir, fname) for fname in os.listdir(processed_dir) if TRAINING_CHUNK_RE.match(fname)] if read_file is not None: read_file = os.path.join(os.getcwd(), save_file) n = PolicyNetwork() n.initialize_variables(read_file) if logdir is not None: n.initialize_logging(logdir) last_save_checkpoint = 0 for i in range(epochs): random.shuffle(train_chunk_files) for file in train_chunk_files: print("Using %s" % file) with timer("load dataset"): train_dataset = DataSet.read(file) with timer("training"): n.train(train_dataset) with timer("save model"): n.save_variables(save_file) if n.get_global_step() > last_save_checkpoint + checkpoint_freq: with timer("test set evaluation"): n.check_accuracy(test_dataset) last_save_checkpoint = n.get_global_step()
def train(processed_dir, read_file=None, save_file=None, epochs=10, logdir=None, checkpoint_freq=10000): test_dataset = DataSet.read(os.path.join(processed_dir, 'test.chunk.gz')) #print(test_dataset) train_chunk_files = [ os.path.join(processed_dir, fname) for fname in os.listdir(processed_dir) if TRAINING_CHUNK_RE.match(fname) ] print(train_chunk_files) if read_file is not None: read_file = os.path.join(os.getcwd(), save_file) n = PolicyNetwork() n.initialize_variables() if logdir is not None: n.initialize_logging(logdir) last_save_checkpoint = 0 for i in range(epochs): random.shuffle(train_chunk_files) for file in tqdm.tqdm(train_chunk_files, desc='epochs ' + str(i)): #print('Using %s' % file) with timer('load dataset'): train_dataset = DataSet.read(file) with timer('training'): n.train(train_dataset) if n.get_global_step() > last_save_checkpoint + checkpoint_freq: with timer('save model'): n.save_variables(save_file) with timer('test set evaluation'): n.check_accuracy(test_dataset) last_save_checkpoint = n.get_global_step() with timer('test set evaluation'): n.check_accuracy(test_dataset)