def mill_temples(outdir, temples, temple_length): #TODO: Replace with information in materials database front_surface_thickness = 0 back_surface_thickness = 4 final_front_thickness = 0 final_back_thickness = 4 thickness = final_front_thickness + final_back_thickness front_surface_removal = final_front_thickness - front_surface_thickness back_surface_removal = final_back_thickness - back_surface_thickness r_temple = poly.rotate_90(temples['right_temple_contour']) l_temple = poly.rotate_90(temples['left_temple_contour']) offset = frame_offset(l_temple) program = [ cam.setup(), cam.select_fixture("blank_clamp"), cam.retract_spindle(), cam.activate_pin("stock_clamp"), surface_front(front_surface_removal), surface_back(back_surface_removal), cam.change_tool("1/16in endmill"), cam.rapid([0,0]), cam.temporary_offset(offset), temple_hinge_pockets(temples), index_holes([l_temple, r_temple], thickness), #thin_temples([l_temple, r_temple], temple_length), ] open(outdir + "/temples_milling.ngc", "w").write(to_string(program))
def mill_temples(outdir, temples, temple_length): #TODO: Replace with information in materials database front_surface_thickness = 0 back_surface_thickness = 4 final_front_thickness = 0 final_back_thickness = 4 thickness = final_front_thickness + final_back_thickness front_surface_removal = final_front_thickness - front_surface_thickness back_surface_removal = final_back_thickness - back_surface_thickness r_temple = poly.rotate_90(temples['right_temple_contour']) l_temple = poly.rotate_90(temples['left_temple_contour']) offset = frame_offset(l_temple) program = [ cam.setup(), cam.select_fixture("blank_clamp"), cam.retract_spindle(), cam.activate_pin("stock_clamp"), surface_front(front_surface_removal), surface_back(back_surface_removal), cam.change_tool("1/16in endmill"), cam.rapid([0, 0]), cam.temporary_offset(offset), temple_hinge_pockets(temples), index_holes([l_temple, r_temple], thickness), #thin_temples([l_temple, r_temple], temple_length), ] open(outdir + "/temples_milling.ngc", "w").write(to_string(program))
def temple_hinge_pockets(temples): # We're operating in a 90 degree rotated fixture #l_hinge = poly.rotate_90(temples["left_hinge_contour"]) #r_hinge = poly.rotate_90(temples["right_hinge_contour"]) l_hinge = temples["left_hinge_contour"] r_hinge = temples["right_hinge_contour"] if not poly.is_ccw(l_hinge): l_hinge = poly.reverse(l_hinge) if not poly.is_ccw(r_hinge): r_hinge = poly.reverse(r_hinge) left_hinge_pocket_contours = [] while len(l_hinge) > 0: l_hinge = poly.erode(1.5875 / 2, l_hinge) if len(l_hinge) > 0: l_hinge = l_hinge[0] left_hinge_pocket_contours.append(l_hinge) right_hinge_pocket_contours = [] while len(r_hinge) > 0: r_hinge = poly.erode(1.5875 / 2, r_hinge) if len(r_hinge) > 0: r_hinge = r_hinge[0] right_hinge_pocket_contours.append(r_hinge) r = [ cam.comment("Hinge Pockets"), cam.feedrate(750), cam.change_tool("1/16in endmill"), cam.start_spindle(15000), cam.dwell(3), cam.comment("Right Hinge Pocket"), cam.pocket(right_hinge_pocket_contours, -abs(temples['pocket_depth']), retract=0), cam.rapid([None, None, 20.0]), cam.comment("Left Hinge Pocket"), cam.pocket(left_hinge_pocket_contours, -abs(temples['pocket_depth']), retract=0), cam.rapid([None, None, 20.0]), cam.comment("Hinge Holes"), cam.change_tool("1mm drill"), cam.start_spindle(4500), cam.dwell(2), [ cam.rmp(p + [-8.0], retract=10.0) for p in temples['right_hinge_holes'] ], [ cam.rmp(p + [-8.0], retract=10.0) for p in temples['left_hinge_holes'] ], cam.rapid([None, None, 20.0]), cam.move([None, None, 0]), cam.contour(poly.rotate_90(temples['left_temple_contour']), True), cam.contour(poly.rotate_90(temples['right_temple_contour']), True), ] return r
def temple_hinge_pockets(temples): # We're operating in a 90 degree rotated fixture #l_hinge = poly.rotate_90(temples["left_hinge_contour"]) #r_hinge = poly.rotate_90(temples["right_hinge_contour"]) l_hinge = temples["left_hinge_contour"] r_hinge = temples["right_hinge_contour"] if not poly.is_ccw(l_hinge): l_hinge = poly.reverse(l_hinge) if not poly.is_ccw(r_hinge): r_hinge = poly.reverse(r_hinge) left_hinge_pocket_contours = []; while len(l_hinge) > 0: l_hinge = poly.erode(1.5875/2, l_hinge) if len(l_hinge) > 0: l_hinge = l_hinge[0] left_hinge_pocket_contours.append(l_hinge) right_hinge_pocket_contours = []; while len(r_hinge) > 0: r_hinge = poly.erode(1.5875/2, r_hinge) if len(r_hinge) > 0: r_hinge = r_hinge[0] right_hinge_pocket_contours.append(r_hinge) r = [ cam.comment("Hinge Pockets"), cam.feedrate(750), cam.change_tool("1/16in endmill"), cam.start_spindle(15000), cam.dwell(3), cam.comment("Right Hinge Pocket"), cam.pocket(right_hinge_pocket_contours, -abs(temples['pocket_depth']), retract=0), cam.rapid([None, None, 20.0]), cam.comment("Left Hinge Pocket"), cam.pocket(left_hinge_pocket_contours, -abs(temples['pocket_depth']), retract=0), cam.rapid([None, None, 20.0]), cam.comment("Hinge Holes"), cam.change_tool("1mm drill"), cam.start_spindle(4500), cam.dwell(2), [cam.rmp(p + [-8.0], retract=10.0) for p in temples['right_hinge_holes']], [cam.rmp(p + [-8.0], retract=10.0) for p in temples['left_hinge_holes']], cam.rapid([None, None, 20.0]), cam.move([None, None, 0]), cam.contour(poly.rotate_90(temples['left_temple_contour']), True), cam.contour(poly.rotate_90(temples['right_temple_contour']), True), ] return r
def nose_poly(r, h, sa, ra, xfloor, erode=0.0, depth=0.0): """ Generates an open contour polygon to match the described nose. r, h, sa and ra are standard radius, height of intercept, splay angle and ridge angle parameters (in radians) yfloor is the end point in the y direction of the nose side lines, for getting the right size of contour optional erode parameter will erode the contour by the given amount, usually the radius of the cutting tool optional depth parameter will generate a contour that matches the nose profile at the given depth """ nose_radius = r r -= erode h -= erode half_sa = sa / 2.0 xfloor = float(xfloor) depth = float(depth) depth_displacement = -depth / math.tan(ra) translation = h - depth_displacement - nose_radius xfloor -= translation p2 = tangent_point(sa, r) p1 = [ p2[0] + math.sin(half_sa) * abs(xfloor) / math.sin(tau / 4.0 - half_sa), xfloor ] rpoly = poly.arc(r, half_sa, tau / 2.0 - half_sa) p3 = [-p2[0], p2[1]] p4 = [-p1[0], p1[1]] base = [p1] + [p2] + rpoly + [p3] + [p4] ret = poly.translate(base, 0.0, translation) return poly.rotate_90(ret)
def face_hinge_pockets(hinge_num, hinge_height, temple_position, centering_shift, thin_back): print 'Generating face hinge pockets', hinge_num xposition = hinge_height; yposition = temple_position+3.0; # 4mm for the temple, but less 1mm for temple hinge pocket print 'Position is ', xposition, yposition left_hinge = hinges.get_hinge(hinge_num) print 'Got left hinge' right_hinge = hinges.get_hinge(hinge_num, False) print 'Retrieved hinge contours' left_translate = [xposition, yposition] right_translate = [xposition, -yposition] print 'Calculated hinge translations' #right_translate = [xposition, 0] # Adjust by pocket depth of hinge #pocket_depth = left_hinge['pocket_depth']+thin_back pocket_depth = 1 + thin_back drill_depth = -thin_back - 2.0 left_contour = poly.mirror_x(poly.rotate_90(left_hinge["face_contour"]), False) right_contour = poly.mirror_x(poly.rotate_90(right_hinge["face_contour"]), False) left_holes = poly.mirror_x(poly.rotate_90(left_hinge["face_holes"]), False) right_holes = poly.mirror_x(poly.rotate_90(right_hinge["face_holes"]), False) left_contour = poly.translate(left_contour, left_translate[0], -left_translate[1]) right_contour = poly.translate(right_contour, right_translate[0], -right_translate[1]) left_holes = poly.translate(left_holes, left_translate[0], -left_translate[1]) right_holes = poly.translate(right_holes, right_translate[0], -right_translate[1]) # Now center everything on the stock left_contour = poly.translate(left_contour, centering_shift[0], -centering_shift[1]) right_contour = poly.translate(right_contour, centering_shift[0], -centering_shift[1]) left_holes = poly.translate(left_holes, centering_shift[0], -centering_shift[1]) right_holes = poly.translate(right_holes, centering_shift[0], -centering_shift[1]) if not poly.is_ccw(left_contour): left_contour = poly.reverse(left_contour) if not poly.is_ccw(right_contour): right_contour = poly.reverse(right_contour) left_hinge_pocket_contours = []; while len(left_contour) > 0: left_contour = poly.erode(1.5875/2, left_contour) if len(left_contour) > 0: left_contour = left_contour[0] left_hinge_pocket_contours.append(left_contour) right_hinge_pocket_contours = []; while len(right_contour) > 0: right_contour = poly.erode(1.5875/2, right_contour) if len(right_contour) > 0: right_contour = right_contour[0] right_hinge_pocket_contours.append(right_contour) r = [ cam.comment("Hinge Pockets"), cam.feedrate(750), cam.change_tool("1/16in endmill"), cam.start_spindle(20000), cam.dwell(3), cam.comment("Right Hinge Pocket"), cam.pocket(right_hinge_pocket_contours, -abs(pocket_depth), retract=-abs(pocket_depth)), cam.rapid([None, None, 20.0]), cam.comment("Left Hinge Pocket"), cam.pocket(left_hinge_pocket_contours, -abs(pocket_depth), retract=-abs(pocket_depth)), cam.rapid([None, None, 20.0]), cam.comment("Hinge Holes"), cam.change_tool("1mm drill"), cam.start_spindle(5000), cam.dwell(2), [cam.rmp(p + [drill_depth], retract=10.0) for p in right_holes], [cam.rmp(p + [drill_depth], retract=10.0) for p in left_holes], cam.rapid([None, None, 20.0]), ] return r
def mill_fronts(outdir, order): """Creates the g-code for the first milling operation. The first milling operation is done on an unregistered plastic blank, so includes creating registration holes for subsequent operations.""" # Initial thickness of the forward-facing lamination. 0 if no lamination. top_thickness = 6 bottom_thickness = 0 top_raw = 6 bottom_raw = 0 if order.get("face_material"): top_thickness = order["face_material"].get("top_thickness") bottom_thickness = order["face_material"].get("bottom_thickness") or 0 top_raw = order["face_material"].get("top_raw_thickness") or top_thickness bottom_raw = order["face_material"].get("bottom_raw_thickness") or bottom_thickness frame_thickness = top_thickness + bottom_thickness machining_z_offset = bottom_raw - bottom_thickness # top_thickness = 6 # bottom_thickness = 0 # total_thickness = 6 # top_raw = 0 # Automatically determine some surfacing. The bottom thickness # is a lamination and should be thin. It should be thinned to 1mm. # The top should be thinned to bring total finished thickness to 6mm or less. thin_back = 0 if bottom_raw > bottom_thickness: thin_back = bottom_raw - bottom_thickness thin_front = 0 if top_raw > top_thickness: thin_front = top_raw - top_thickness # The machine has the stock clamp oriented 90 degrees to the way the # software creates the contours. face_c = poly.rotate_90(order["face_con"]) left_lens_c = poly.rotate_90(order["lhole_con"]) right_lens_c = poly.mirror_y(left_lens_c, True) face_c = face_c + poly.reverse(poly.mirror_y(face_c, False))[1:] temple_height = abs(order["ltemple_con"][0][1] - order["ltemple_con"][-1][1]) msg = check_frame_size(left_lens_c) if msg: print msg sys.exit(1) # Instead of offset, we'll make sure this thing is centered on the stock offset = frame_offset(face_c) top = poly.top(face_c) bottom = poly.bottom(face_c) left = poly.left(face_c) right = poly.right(face_c) print 'frame bounding box: ', top, bottom, left, right y_shift = (top + bottom)/2 x_shift = (left + right)/2 print 'x and y shift', x_shift, y_shift face_c = poly.translate(face_c, -x_shift, -y_shift) left_lens_c = poly.translate(left_lens_c, -x_shift, -y_shift) right_lens_c = poly.translate(right_lens_c, -x_shift, -y_shift) # Groove for lenses is 2/3 of the distance from back to front. # Here we're calculating the actual cutting depth so we need to add # back the material that we surfaced away from the back. groove_depth = -(float(machining_z_offset) + (2.0/3)*float(frame_thickness)) hinge_loc = order["ltemple_con"][0][1] - (order["ltemple_con"][0][1] - order["ltemple_con"][-1][1])/2 size_info = order.get('size_info') if not size_info and order.get('usersizes'): # Legacy order size_info = order.get('usersizes') size_info["noseradius"] = size_info["nose_radius"] size_info["noseheight"] = size_info["nose_height"] size_info["splayangle"] = size_info["nose_splayangle"] size_info["ridgeangle"] = size_info["nose_ridgeangle"] generic = not size_info or len(size_info) == 0 generic = True # TESTING program = [ cam.setup(), cam.select_fixture("blank_clamp"), cam.retract_spindle(), cam.activate_pin("stock_clamp"), cam.rapid([0,0]), surface_front(thin_front), surface_back(thin_back), cam.change_tool("1/8in endmill"), cam.rapid([0, 0]), # Note that X and Y parameters in the order are switched from our system #TODO: replace the thickness offset with the thickness of the TEMPLE, not the fronts. index_holes(frame_thickness+machining_z_offset), lens_holes(left_lens_c, right_lens_c, frame_thickness + machining_z_offset), lens_groove(left_lens_c, right_lens_c, groove_depth), # rough_nose_contour( # float(size_info["noseradius"]), # float(size_info["noseheight"]), # float(size_info["splayangle"]), # float(size_info["ridgeangle"]), # face_c, frame_thickness, machining_z_offset, -x_shift ), face_hinge_pockets(order.get("lhinge") or 1, hinge_loc, order["ltemple_x"], (-x_shift, -y_shift), machining_z_offset), #nose_pads(order, thickness), nose_contour( float(size_info["noseradius"]), float(size_info["noseheight"]), float(size_info["splayangle"]), float(size_info["ridgeangle"]), face_c, frame_thickness, machining_z_offset, -x_shift ), # nose_contour( # 7.0, 8.0, 30.0, 32.0, face_c, frame_thickness, machining_z_offset, -x_shift), #generic_nose_contour(face_c, frame_thickness, machining_z_offset, -x_shift), cam.retract_spindle(), cam.deactivate_pin("stock_clamp"), cam.change_tool("1/8in endmill"), # cam.rapid([face_c[0][0], face_c[0][1], -thin_back] ), # cam.contour(face_c, True), cam.end_program(), ] print 'Writing face milling program to ', outdir + "/face_stange1.ngc" open(outdir + "/face_stage1.ngc", "w").write(to_string(program))
def main(): """Run as a command line program.""" parser = OptionParser() parser.add_option("-i", "--infile", dest="infile", help="read specification from INFILE", metavar="INFILE") parser.add_option("-o", "--out", dest="outname", help="Name of output director", metavar="OUTDIR") parser.add_option("-u", "--url", dest="url", help="read specification from URL", metavar="URL") (options, args) = parser.parse_args() if options.infile == None and options.url == None: log("Insufficient arguments.") parser.print_help() sys.exit(0) infile = open(options.infile) if options.infile else urllib.urlopen(options.url) o = json.loads(infile.read()) # if o["usersizes"]: # # This is a legacy order - we need to scale the temples because # # it hasn't been done already. # templescale = float(o["usersizes"]["temple_length"]) / 100.0 # temp = o["ltemple_con"] # hinge = o["lhinge"] # for i in range(1, len(temp)-2): # temp[i][0] = temp[i][0] * templescale; order_id = o.get("order_id") or "testorder" # outname = datetime.date.today().isoformat() + "/" + order_id # if options.outname == None: # print "extracting out name from ", options.infile # outname = options.infile.split("/")[-1] # outname = outname.split(".")[0] # outname = datetime.date.today().isoformat() + "/" + outname # print "out file is ", outname # else: # outname = options.outname # Create the output director #order_dir = "/Users/rodfrey/Dropbox/guild_orders/" + outname #order_dir = "/Volumes/Untitled/" + outname # order_dir = "/Users/ana0/Development/framebot2/" + outname order_dir = options.outname if not os.path.exists(order_dir): os.makedirs(order_dir) print 'Created dir', order_dir else: for i in range(1, 101): candidate = order_dir + "_" + str(i) print 'checking directory', candidate if i == 100: print 'Too many directories! Could not create order directory' sys.exit(1) if not os.path.exists(candidate): order_dir = candidate os.makedirs(order_dir) print "Created dir", order_dir break # Create the milling program for the lens holes/groove, hinge pockets, etc. # and the dxf for the laser for the fronts mill_fronts(order_dir, o) laser_face = o['face_con'] laser_face = laser_face + poly.reverse(poly.mirror_x(laser_face, False))[1:] # Rearrange the face curve a bit so the laser starts outside the curve. # Otherwise it leaves a little scar where it starts. laser_face = poly.new_start(laser_face, poly.leftmost_index(laser_face)) laser_face.append(laser_face[0]) # Close the curve first_vector = [laser_face[1][0]-laser_face[0][0], laser_face[1][1]-laser_face[0][1]] unit = math.sqrt(first_vector[0]**2 + first_vector[1]**2) leadin_vector = [(4*first_vector[0])/unit,(4*first_vector[1])/unit] leadin_start = [laser_face[0][0] - leadin_vector[0], laser_face[0][1] - leadin_vector[1]] last_vector = [laser_face[-2][0]-laser_face[-1][0], laser_face[-2][1]-laser_face[-1][1]] unit = math.sqrt(last_vector[0]**2 + last_vector[1]**2) leadout_vector = [(4*last_vector[0])/unit,(4*last_vector[1])/unit] leadout_end = [laser_face[-1][0] + leadout_vector[0], laser_face[-1][1] + leadout_vector[1]] # laser_face.insert(0, leadin_start) create_dxf(order_dir + "/face_contour.dxf", [laser_face], close=False) # temple_dxf(o, order_dir + "/left_temple.dxf", 1, False) # temple_dxf(o, order_dir + "/right_temple.dxf", 1, True) # Arrange the temples to fit on the stock temples = arrange_temple_curves(o['ltemple_con'], o.get('lhinge') or 1) left_hinge = poly.rotate_90(temples['left_hinge_contour']) right_hinge = poly.rotate_90(temples['right_hinge_contour']) # l_temple = poly.rotate_90(temples['left_temple_contour']); r_temple = poly.rotate_90(temples['right_temple_contour']); # create_dxf(order_dir + "/temple_contour.dxf", [poly.rotate_90(temples['left_temple_contour']), poly.rotate_90(temples['right_temple_contour'])[::-1], # left_hinge, # right_hinge, ], close_with_arc=False, close=False) mill_temples(order_dir, temples, o)
def arrange_temple_curves(left_temple_contour, hinge): # Normalize temple to get origin at 0,0 left_temple_contour = poly.translate(left_temple_contour, -left_temple_contour[0][0], -left_temple_contour[0][1]) right_temple_contour = poly.mirror_x(left_temple_contour, False) left_hinge = hinges.get_hinge(hinge) right_hinge = hinges.get_hinge(hinge, False) hinge_y = (left_temple_contour[0][1]+left_temple_contour[-1][1])/2 left_holes = left_hinge['temple_holes'] right_holes = right_hinge['temple_holes'] # opposite direction. FIX someday right_hinge_contour = right_hinge['temple_contour'] left_hinge_contour = left_hinge['temple_contour'] # y offset is mucked up because it's calculated from the center of the hinge boxing # square, not the center of the straight edge highpoint = poly.top(left_hinge_contour); lowpoint = poly.bottom(left_hinge_contour); y_offset = hinge_y-(lowpoint + (highpoint-lowpoint)/2.0) # Distance to move hinge to center it on temple # strategy for hinge placement. Align corner of print left_temple_contour[0][0], left_temple_contour[-1][0] temple_x = left_temple_contour[0][0] - (left_temple_contour[0][0] - left_temple_contour[-1][0]) / 2 x_offset = temple_x - left_hinge_contour[0][0] - 2.5 left_hinge_contour = poly.translate(left_hinge_contour, x_offset, y_offset) left_holes = poly.translate(left_holes, x_offset, y_offset) right_hinge_contour = poly.translate(right_hinge_contour, -x_offset, y_offset) right_holes = poly.translate(right_holes, -x_offset, y_offset) left_temple_contour = poly.rotate_90(left_temple_contour) left_hinge_contour = poly.rotate_90(left_hinge_contour) left_holes = poly.rotate_90(left_holes) right_temple_contour = poly.rotate(right_temple_contour, 90) right_hinge_contour = poly.rotate(right_hinge_contour, 90) right_holes = poly.rotate(right_holes, 90) # Move them apart so they're not touching height = poly.right(left_temple_contour) - poly.left(left_temple_contour)+1 left_temple_contour = poly.translate(left_temple_contour, height, 0) left_holes = poly.translate(left_holes, height, 0) left_hinge_contour = poly.translate(left_hinge_contour, height, 0) right_temple_contour = poly.translate(right_temple_contour, -height, 0) right_holes = poly.translate(right_holes, -height, 0) right_hinge_contour = poly.translate(right_hinge_contour, -height, 0) # # Move left one left, right one right to offset them temple_width = poly.top(left_temple_contour) - poly.bottom(left_temple_contour) optimization_offset = (160-temple_width)/2.0 print 'optimization offset', optimization_offset, temple_width left_temple_contour = poly.translate(left_temple_contour, 0, optimization_offset) left_holes = poly.translate(left_holes, 0, optimization_offset) left_hinge_contour = poly.translate(left_hinge_contour, 0, optimization_offset) right_temple_contour = poly.translate(right_temple_contour, 0, -optimization_offset) right_hinge_contour = poly.translate(right_hinge_contour, 0, -optimization_offset) right_holes = poly.translate(right_holes, 0, -optimization_offset) # Make sure they're not intersecting # translation_step = 2.5 # intersection = poly.intersection(left_temple_contour, right_temple_contour) # while(len(intersection) > 0): # left_temple_contour = poly.translate(left_temple_contour, translation_step, 0) # left_holes = poly.translate(left_holes, translation_step, 0) # left_hinge_contour = poly.translate(left_hinge_contour, translation_step, 0) # right_temple_contour = poly.translate(right_temple_contour, -translation_step, 0) # right_holes = poly.translate(right_holes, -translation_step, 0) # right_hinge_contour = poly.translate(right_hinge_contour, -translation_step, 0) # intersection = poly.intersection(left_temple_contour, right_temple_contour) # Move them together until they touch (may will not have moved at all above because they are far) # then back off. #smaller translation step (was 1.0) translation_step = 0.1 intersection = [] while(len(intersection) == 0): print "still intersecting", len(intersection) left_temple_contour = poly.translate(left_temple_contour, -translation_step, 0) left_holes = poly.translate(left_holes, -translation_step, 0) left_hinge_contour = poly.translate(left_hinge_contour, -translation_step, 0) right_temple_contour = poly.translate(right_temple_contour, translation_step, 0) right_holes = poly.translate(right_holes, translation_step, 0) right_hinge_contour = poly.translate(right_hinge_contour, translation_step, 0) intersection = poly.intersection(left_temple_contour, right_temple_contour) # # Sarah commented the code below out as it seems to be speading the temples out farther than necessary # And I don't think we need it? # We're just overlapping, so now back off # translation_step = 0.5 # left_temple_contour = poly.translate(left_temple_contour, translation_step, 0) # left_holes = poly.translate(left_holes, translation_step, 0) # left_hinge_contour = poly.translate(left_hinge_contour, translation_step, 0) # right_temple_contour = poly.translate(right_temple_contour, -translation_step, 0) # right_holes = poly.translate(right_holes, -translation_step, 0) # right_hinge_contour = poly.translate(right_hinge_contour, -translation_step, 0) # # sanity check that we fit on stock total_width = poly.right(left_temple_contour) - poly.left(right_temple_contour) print "before spreading, total width is:", total_width if total_width > 55: print 'Error! temples did not pack tight enough.', total_width raise 'Sizing error' # ## Spread them out while total_width < 55: print "spreading out temples" left_temple_contour = poly.translate(left_temple_contour, translation_step, 0) left_holes = poly.translate(left_holes, translation_step, 0) left_hinge_contour = poly.translate(left_hinge_contour, translation_step, 0) right_temple_contour = poly.translate(right_temple_contour, -translation_step, 0) right_holes = poly.translate(right_holes, -translation_step, 0) right_hinge_contour = poly.translate(right_hinge_contour, -translation_step, 0) total_width = poly.right(left_temple_contour) - poly.left(right_temple_contour) intersection = poly.intersection(left_temple_contour, right_temple_contour) if len(intersection) > 0: print 'Error! Temples are too big to fit on stock.', total_width raise 'Sizing Error' print 'Total width of temples', total_width # Now they're packed togegther OK but not centred on the stock #Midpoint of curves should be 0, so that's how much we'll shift it y_centering_shift = poly.bottom(right_temple_contour) + (poly.top(left_temple_contour) - poly.bottom(right_temple_contour))/2.0 x_centering_shift = (poly.right(left_temple_contour) + poly.left(right_temple_contour))/2; left_temple_contour = poly.translate(left_temple_contour, -x_centering_shift, -y_centering_shift) right_temple_contour = poly.translate(right_temple_contour, -x_centering_shift, -y_centering_shift) left_hinge_contour = poly.translate(left_hinge_contour, -x_centering_shift, -y_centering_shift) right_hinge_contour = poly.translate(right_hinge_contour, -x_centering_shift, -y_centering_shift) left_holes = poly.translate(left_holes, -x_centering_shift, -y_centering_shift) right_holes = poly.translate(right_holes, -x_centering_shift, -y_centering_shift) # The temple contours aren't closed, close them here # NOTE: Taken out because we close the curves with a little arc to account for front curvature #left_temple_contour.append(left_temple_contour[0]) #right_temple_contour.append(right_temple_contour[0]) return { "pocket_depth": 1, "left_hinge_contour": left_hinge_contour, "right_hinge_contour": right_hinge_contour, "left_hinge_holes": left_holes, "right_hinge_holes": right_holes, "left_temple_contour": left_temple_contour, "right_temple_contour": right_temple_contour }
def arrange_temple_curves(left_temple_contour, right_temple_contour, hinge, lhinge_y, rhinge_y): left_hinge = hinges.get_hinge(hinge) right_hinge = hinges.get_hinge(hinge, False) print 'first and last point of left_temple_contour' print left_temple_contour[0], left_temple_contour[-1] left_holes = poly.rotate_90(left_hinge['temple_holes']) right_holes = poly.rotate(right_hinge['temple_holes'], 90) # opposite direction. FIX someday left_hinge_contour = poly.rotate_90(left_hinge['temple_contour']) right_hinge_contour = poly.rotate(right_hinge['temple_contour'], 90) #right_hinge_contour = right_hinge['temple_contour'] #left_holes = left_hinge['temple_holes'] #right_holes = right_hinge['temple_holes'] # Get the thing as horizontal as possible # When top-bottom distance is minimized, it's horizontal height = poly.top(left_temple_contour) - poly.bottom(left_temple_contour) opt_angle = 0 for angle in range(2, 41): candidate_contour = poly.rotate(left_temple_contour, -angle) candidate_height = poly.top(candidate_contour) - poly.bottom( candidate_contour) if candidate_height < height: height = candidate_height opt_angle = angle else: break # The temple is raised or lowered as compared to the Y axis. We need # to bring it to the Y origin for rotation to avoid offsetting it, then # send it back to its original spot. original_y_offset = left_temple_contour[0][1] - ( left_temple_contour[0][1] - left_temple_contour[-1][1]) / 2 left_temple_contour = poly.translate(left_temple_contour, 0, -original_y_offset) left_temple_contour = poly.rotate(left_temple_contour, -opt_angle) left_temple_contour = poly.translate(left_temple_contour, 0, original_y_offset) right_temple_contour = poly.translate(right_temple_contour, 0, -original_y_offset) right_temple_contour = poly.rotate(right_temple_contour, opt_angle) right_temple_contour = poly.translate(right_temple_contour, 0, original_y_offset) #left_holes = poly.rotate(left_hinge['temple_holes'], -opt_angle) #right_holes = poly.rotate(right_hinge['temple_holes'], opt_angle) #left_hinge_contour = poly.rotate(left_hinge['temple_contour'], -opt_angle) #right_hinge_contour = poly.rotate(right_hinge['temple_contour'], opt_angle) left_holes = poly.rotate(left_holes, -opt_angle) right_holes = poly.rotate(right_holes, opt_angle) left_hinge_contour = poly.rotate(left_hinge_contour, -opt_angle) right_hinge_contour = poly.rotate(right_hinge_contour, opt_angle) left_hinge_contour = poly.translate(left_hinge_contour, lhinge_y, -left_hinge['pocket_depth']) right_hinge_contour = poly.translate(right_hinge_contour, rhinge_y, right_hinge['pocket_depth']) # Left and right translate are reversed because we've rotated everything left_holes = poly.translate(left_holes, lhinge_y, -left_hinge['pocket_depth']) right_holes = poly.translate(right_holes, rhinge_y, right_hinge['pocket_depth']) temple_width = poly.right(left_temple_contour) - poly.left( left_temple_contour) print "temple width", temple_width lt_trans = [temple_width / 2, 0] rt_trans = [-lt_trans[0], 0] #lt_trans = [180-poly.right(left_temple_contour), -poly.top(left_temple_contour) - 30] #lt_trans = [-poly.right(left_temple_contour)-30, 180 -poly.top(left_temple_contour)] #rt_trans = [-poly.left(right_temple_contour)+25, lt_trans[1]-height] # Translate them left_temple_contour = poly.translate(left_temple_contour, lt_trans[0], lt_trans[1]) right_temple_contour = poly.translate(right_temple_contour, rt_trans[0], rt_trans[1]) left_hinge_contour = poly.translate(left_hinge_contour, lt_trans[1], -lt_trans[0]) right_hinge_contour = poly.translate(right_hinge_contour, rt_trans[1], -rt_trans[0]) left_holes = poly.translate(left_holes, lt_trans[1], -lt_trans[0]) right_holes = poly.translate(right_holes, rt_trans[1], -rt_trans[0]) # Translate bottom one upward as much as we can trans_amount = poly.bottom(left_temple_contour) - poly.top( right_temple_contour) - 8 for i in range(1, 100): candidate = poly.translate(right_temple_contour, 0, trans_amount + i) intersection = poly.intersection(candidate, left_temple_contour) if len(intersection) > 0: trans_amount = trans_amount + i - 8 right_temple_contour = poly.translate(right_temple_contour, 0, trans_amount) break print 'trans amount:', trans_amount right_hinge_contour = poly.translate(right_hinge_contour, trans_amount, 0) right_holes = poly.translate(right_holes, trans_amount, 0) return { "pocket_depth": left_hinge['pocket_depth'], "left_hinge_contour": left_hinge_contour, "right_hinge_contour": right_hinge_contour, "left_hinge_holes": left_holes, "right_hinge_holes": right_holes, "left_temple_contour": left_temple_contour, "right_temple_contour": right_temple_contour }
def mill_fronts(outdir, order): """Creates the g-code for the first milling operation. The first milling operation is done on an unregistered plastic blank, so includes creating registration holes for subsequent operations.""" #TODO: Replace with information in materials database # Initial thickness of the forward-facing lamination. 0 if no lamination. front_surface_thickness = 0 # The final desired thickness of the fronto facing lamination. Must # be equal to or less than the front_surface_thickness. final_front_thickness = 0 # Initial thickness of the face side lamination. Use this thickness only if # stock is solid back_surface_thickness = 4 # The final thickness of the left and right extremes of the frame where the # hinge will go. Must be equal to or less than back_surface_thickness. hinge_thickness = 4 # The thickness of the highest point of the nosepad nosepad_thickness = 4 # Final thickness of the main part of the frame. Must be equal to or less than # the back_surface_thickness. final_back_thickness = 4 thickness = final_front_thickness + final_back_thickness front_surface_removal = final_front_thickness - front_surface_thickness back_surface_removal = final_back_thickness - back_surface_thickness # The machine has the stock clamp oriented 90 degrees to the way the # software creates the contours. face_c = poly.rotate_90(order["face_con"]) left_lens_c = poly.rotate_90(order["lhole_con"]) right_lens_c = poly.rotate_90(order["rhole_con"]) temple_height = abs(order["ltemple_con"][0][1] - order["ltemple_con"][-1][1]) msg = check_frame_size(face_c) if msg: print msg sys.exit(0) print 'milling front with hinge', order['lhinge'], order['rhinge'] offset = frame_offset(face_c) groove_height = back_surface_removal + (thickness / 2) print 'groove', groove_height, back_surface_removal, (thickness / 2) program = [ cam.setup(), cam.select_fixture("blank_clamp"), cam.retract_spindle(), cam.activate_pin("stock_clamp"), surface_front(front_surface_removal), # surface_back(back_surface_removal), cam.change_tool("1/8in endmill"), cam.rapid([0, 0]), cam.temporary_offset(offset), # Note that X and Y parameters in the order are switched from our system #TODO: replace the thickness offset with the thickness of the TEMPLE, not the fronts. index_holes([face_c], back_surface_thickness), lens_holes(left_lens_c, right_lens_c, back_surface_thickness), lens_groove(left_lens_c, right_lens_c, back_surface_removal - (thickness / 2)), # contour_face( # back_surface_removal, # back_surface_thickness - hinge_thickness, # back_surface_thickness - nosepad_thickness, # temple_height, # face_c, left_lens_c, order['lhinge_y']), face_hinge_pockets(order["lhinge"], order["lhinge_y"], order["ltemple_x"]), # nose_pads(order, thickness), nose_contour(order["nose_rad"], order["nose_h"], order["nose_sa"], order["nose_ra"], face_c, back_surface_thickness), cam.retract_spindle(), cam.deactivate_pin("stock_clamp"), cam.end_program(), ] open(outdir + "/face_stage1.ngc", "w").write(to_string(program))
def mill_fronts(outdir, order): """Creates the g-code for the first milling operation. The first milling operation is done on an unregistered plastic blank, so includes creating registration holes for subsequent operations.""" #TODO: Replace with information in materials database # Initial thickness of the forward-facing lamination. 0 if no lamination. front_surface_thickness = 0 # The final desired thickness of the fronto facing lamination. Must # be equal to or less than the front_surface_thickness. final_front_thickness = 0 # Initial thickness of the face side lamination. Use this thickness only if # stock is solid back_surface_thickness = 4 # The final thickness of the left and right extremes of the frame where the # hinge will go. Must be equal to or less than back_surface_thickness. hinge_thickness = 4 # The thickness of the highest point of the nosepad nosepad_thickness = 4 # Final thickness of the main part of the frame. Must be equal to or less than # the back_surface_thickness. final_back_thickness =4 thickness = final_front_thickness + final_back_thickness front_surface_removal = final_front_thickness - front_surface_thickness back_surface_removal = final_back_thickness - back_surface_thickness # The machine has the stock clamp oriented 90 degrees to the way the # software creates the contours. face_c = poly.rotate_90(order["face_con"]) left_lens_c = poly.rotate_90(order["lhole_con"]) right_lens_c = poly.rotate_90(order["rhole_con"]) temple_height = abs(order["ltemple_con"][0][1] - order["ltemple_con"][-1][1]) msg = check_frame_size(face_c) if msg: print msg sys.exit(0) print 'milling front with hinge', order['lhinge'], order['rhinge'] offset = frame_offset(face_c) groove_height = back_surface_removal + (thickness/2) print 'groove', groove_height, back_surface_removal, (thickness/2) program = [ cam.setup(), cam.select_fixture("blank_clamp"), cam.retract_spindle(), cam.activate_pin("stock_clamp"), surface_front(front_surface_removal), # surface_back(back_surface_removal), cam.change_tool("1/8in endmill"), cam.rapid([0, 0]), cam.temporary_offset(offset), # Note that X and Y parameters in the order are switched from our system #TODO: replace the thickness offset with the thickness of the TEMPLE, not the fronts. index_holes([face_c], back_surface_thickness), lens_holes(left_lens_c, right_lens_c, back_surface_thickness), lens_groove(left_lens_c, right_lens_c, back_surface_removal - (thickness/2)), # contour_face( # back_surface_removal, # back_surface_thickness - hinge_thickness, # back_surface_thickness - nosepad_thickness, # temple_height, # face_c, left_lens_c, order['lhinge_y']), face_hinge_pockets(order["lhinge"], order["lhinge_y"], order["ltemple_x"]), # nose_pads(order, thickness), nose_contour(order["nose_rad"], order["nose_h"], order["nose_sa"], order["nose_ra"], face_c, back_surface_thickness), cam.retract_spindle(), cam.deactivate_pin("stock_clamp"), cam.end_program(), ] open(outdir + "/face_stage1.ngc", "w").write(to_string(program))
def arrange_temple_curves(left_temple_contour, right_temple_contour, hinge, lhinge_y, rhinge_y): left_hinge = hinges.get_hinge(hinge) right_hinge = hinges.get_hinge(hinge, False) print 'first and last point of left_temple_contour' print left_temple_contour[0], left_temple_contour[-1] left_holes = poly.rotate_90(left_hinge['temple_holes']) right_holes = poly.rotate(right_hinge['temple_holes'], 90) # opposite direction. FIX someday left_hinge_contour = poly.rotate_90(left_hinge['temple_contour']) right_hinge_contour = poly.rotate(right_hinge['temple_contour'], 90) #right_hinge_contour = right_hinge['temple_contour'] #left_holes = left_hinge['temple_holes'] #right_holes = right_hinge['temple_holes'] # Get the thing as horizontal as possible # When top-bottom distance is minimized, it's horizontal height = poly.top(left_temple_contour) - poly.bottom(left_temple_contour) opt_angle = 0 for angle in range(2, 41): candidate_contour = poly.rotate(left_temple_contour, -angle) candidate_height = poly.top(candidate_contour)-poly.bottom(candidate_contour) if candidate_height < height: height = candidate_height opt_angle = angle else: break # The temple is raised or lowered as compared to the Y axis. We need # to bring it to the Y origin for rotation to avoid offsetting it, then # send it back to its original spot. original_y_offset = left_temple_contour[0][1] - (left_temple_contour[0][1] - left_temple_contour[-1][1])/2 left_temple_contour = poly.translate(left_temple_contour, 0, -original_y_offset) left_temple_contour = poly.rotate(left_temple_contour, -opt_angle); left_temple_contour = poly.translate(left_temple_contour, 0, original_y_offset) right_temple_contour = poly.translate(right_temple_contour, 0, -original_y_offset) right_temple_contour = poly.rotate(right_temple_contour, opt_angle); right_temple_contour = poly.translate(right_temple_contour, 0, original_y_offset) #left_holes = poly.rotate(left_hinge['temple_holes'], -opt_angle) #right_holes = poly.rotate(right_hinge['temple_holes'], opt_angle) #left_hinge_contour = poly.rotate(left_hinge['temple_contour'], -opt_angle) #right_hinge_contour = poly.rotate(right_hinge['temple_contour'], opt_angle) left_holes = poly.rotate(left_holes, -opt_angle) right_holes = poly.rotate(right_holes, opt_angle) left_hinge_contour = poly.rotate(left_hinge_contour, -opt_angle) right_hinge_contour = poly.rotate(right_hinge_contour, opt_angle) left_hinge_contour = poly.translate(left_hinge_contour, lhinge_y, -left_hinge['pocket_depth']) right_hinge_contour = poly.translate(right_hinge_contour, rhinge_y, right_hinge['pocket_depth']) # Left and right translate are reversed because we've rotated everything left_holes = poly.translate(left_holes, lhinge_y, -left_hinge['pocket_depth']) right_holes = poly.translate(right_holes, rhinge_y, right_hinge['pocket_depth']) temple_width = poly.right(left_temple_contour) - poly.left(left_temple_contour) print "temple width", temple_width lt_trans = [temple_width/2, 0] rt_trans = [-lt_trans[0], 0] #lt_trans = [180-poly.right(left_temple_contour), -poly.top(left_temple_contour) - 30] #lt_trans = [-poly.right(left_temple_contour)-30, 180 -poly.top(left_temple_contour)] #rt_trans = [-poly.left(right_temple_contour)+25, lt_trans[1]-height] # Translate them left_temple_contour = poly.translate(left_temple_contour, lt_trans[0], lt_trans[1]) right_temple_contour = poly.translate(right_temple_contour, rt_trans[0], rt_trans[1]) left_hinge_contour = poly.translate(left_hinge_contour, lt_trans[1], -lt_trans[0]) right_hinge_contour = poly.translate(right_hinge_contour, rt_trans[1], -rt_trans[0]) left_holes = poly.translate(left_holes, lt_trans[1], -lt_trans[0]) right_holes = poly.translate(right_holes, rt_trans[1], -rt_trans[0]) # Translate bottom one upward as much as we can trans_amount = poly.bottom(left_temple_contour) - poly.top(right_temple_contour) - 8 for i in range(1, 100): candidate = poly.translate(right_temple_contour, 0, trans_amount + i) intersection = poly.intersection(candidate, left_temple_contour) if len(intersection) > 0: trans_amount = trans_amount + i -8 right_temple_contour = poly.translate(right_temple_contour, 0, trans_amount) break print 'trans amount:', trans_amount right_hinge_contour = poly.translate(right_hinge_contour, trans_amount, 0) right_holes = poly.translate(right_holes, trans_amount, 0) return { "pocket_depth": left_hinge['pocket_depth'], "left_hinge_contour": left_hinge_contour, "right_hinge_contour": right_hinge_contour, "left_hinge_holes": left_holes, "right_hinge_holes": right_holes, "left_temple_contour": left_temple_contour, "right_temple_contour": right_temple_contour }