def test_invalid_polyhedra(self):
        with self.assertRaises(ValueError):
            # Tetrahedron with one face incorrectly oriented.
            Polyhedron(
                vertex_positions=[
                    (0, 0, 0),
                    (0, 1, 1),
                    (1, 0, 1),
                    (1, 1, 0),
                ],
                triangles=[
                    [0, 1, 3],
                    [0, 1, 2],
                    [0, 3, 2],
                    [1, 2, 3],
                ],
            )

        with self.assertRaises(ValueError):
            # Tetrahedron with a duplicated face.
            Polyhedron(
                vertex_positions=[
                    (0, 0, 0),
                    (0, 1, 1),
                    (1, 0, 1),
                    (1, 1, 0),
                ],
                triangles=[
                    [0, 1, 3],
                    [0, 2, 1],
                    [0, 3, 2],
                    [1, 2, 3],
                    [1, 2, 3],
                ],
            )

        with self.assertRaises(ValueError):
            # Tetrahedron with a missing face.
            Polyhedron(
                vertex_positions=[
                    (0, 0, 0),
                    (0, 1, 1),
                    (1, 0, 1),
                    (1, 1, 0),
                ],
                triangles=[
                    [0, 1, 3],
                    [0, 2, 1],
                    [0, 3, 2],
                ],
            )
Exemple #2
0
    def _build_triangle(self, cell, points):
        faces = tvtk.CellArray()
        
        polygon = tvtk.Polygon()
        polygon.point_ids.number_of_ids = 3
        polygon.point_ids.set_id(0, 0)
        polygon.point_ids.set_id(1, 1)
        polygon.point_ids.set_id(2, 2)    
        faces.insert_next_cell(polygon)      

        cell_points = self._get_cell_points(cell, points)
        
        poly = Polyhedron(cell_points, faces)
        name = 'Triang-{}-{}-{}'.format(*cell)
        
        return poly, name
Exemple #3
0
    def _build_tetrahedron(self, cell, points):
        faces = tvtk.CellArray()
        
        for i0,i1,i2 in [(0,1,2), (0,3,1), (0,2,3), (1,3,2)]:
            polygon = tvtk.Polygon()
            polygon.point_ids.number_of_ids = 3
            polygon.point_ids.set_id(0, i0)
            polygon.point_ids.set_id(1, i1)
            polygon.point_ids.set_id(2, i2)          
            faces.insert_next_cell(polygon)

        cell_points = self._get_cell_points(cell, points)
        
        poly = Polyhedron(cell_points, faces)
        name = 'Tetra-{}-{}-{}-{}'.format(*cell)
        
        return poly, name
Exemple #4
0
    def _build_quadrilateral(self, cell, points):
        faces = tvtk.CellArray()
        
        polygon = tvtk.Polygon()
        polygon.point_ids.number_of_ids = 4
        polygon.point_ids.set_id(0, 0)
        polygon.point_ids.set_id(1, 1)
        polygon.point_ids.set_id(2, 2)
        polygon.point_ids.set_id(3, 3)
        faces.insert_next_cell(polygon)      

        cell_points = self._get_cell_points(cell, points)
        
        poly = Polyhedron(cell_points, faces)
        name = 'Quad-{}-{}-{}-{}'.format(*cell)
        
        return poly, name
Exemple #5
0
 def _build_voxel(self, cell, points):
     faces = tvtk.CellArray()
     
     for i0,i1,i2,i3 in [(0,1,3,2), (1,3,7,5), (5,7,6,4), (4,0,2,6),
                         (6,2,3,7), (0,1,5,4)]:
         polygon = tvtk.Polygon()
         polygon.point_ids.number_of_ids = 4
         polygon.point_ids.set_id(0, i0)
         polygon.point_ids.set_id(1, i1)
         polygon.point_ids.set_id(2, i2)
         polygon.point_ids.set_id(3, i3)     
         faces.insert_next_cell(polygon)
     
     cell_points = self._get_cell_points(cell, points)
     
     poly = Polyhedron(cell_points, faces)
     name = 'Voxel-{}-{}-{}-{}-{}-{}-{}-{}'.format(*cell)
     
     return poly, name
Exemple #6
0
def main(args):
    if args.sig is not None:
        T = curver.triangulation_from_sig(args.sig)
    else:
        T = curver.load(args.genus, max(args.punctures, 1)).triangulation
    
    P = Polyhedron.from_triangulation(T, args.upper, zeros=args.zeros)
    num_integral_points = P.integral_points_count(triangulation='cddlib')
    print(P)
    try:
        print('Polytope dimension: {}'.format(P.as_sage().dimension()))
    except AttributeError:
        print('Polytope dimension: Unknown')
    print('Drawing from [0, {})'.format(num_integral_points))
    
    common = dict(T=T, P=P, closed=args.punctures == 0)
    iterable = (dict(index=randrange(0, num_integral_points)) for _ in range(args.num))
    
    process(from_index, common, iterable, cores=args.cores, path=args.output)
Exemple #7
0
    def test_numpy_int64_compatibility(self):
        # This is a repetition of test_cube, but using NumPy int64
        # values in place of Python ints, and ndarrays in place
        # of lists or tuples.
        numpy_cube = Polyhedron(
            triangles=numpy.array(cube.triangles, dtype=numpy.int64),
            vertex_positions=numpy.array(
                cube.vertex_positions, dtype=numpy.int64),
        )

        # Check volume
        self.assertEqual(numpy_cube.volume(), 8)

        def classify(point):
            x, y, z = point
            if -1 < x < 1 and -1 < y < 1 and -1 < z < 1:
                return "inside"
            if -1 <= x <= 1 and -1 <= y <= 1 and -1 <= z <= 1:
                return "boundary"
            return "outside"

        # Quarter-integer boundaries from -1.25 to 1.25 inclusive.
        xs = ys = zs = numpy.linspace(-1.25, 1.25, 11)

        points = [(x, y, z) for x in xs for y in ys for z in zs]
        for point in points:
            class_ = classify(point)
            if class_ == "inside":
                self.assertEqual(numpy_cube.winding_number(point), 1)
            elif class_ == "outside":
                self.assertEqual(numpy_cube.winding_number(point), 0)
            elif class_ == "boundary":
                # Point is on the boundary.
                with self.assertRaises(ValueError):
                    numpy_cube.winding_number(point)
            else:
                assert False, "should never get here"
from polyhedron import Polyhedron

n = 6  #number of variables
m_B = 8  #number of inequality constraints
m_A = 2  #number of equality constraints

#randomly generate matrices for a polyhedron
B_values = numpy.random.randint(low=-10, high=10, size=n * m_B)
B = numpy.array(B_values).reshape(m_B, n)
A = None
if (m_A > 0):
    A_values = numpy.random.randint(low=-10, high=10, size=n * m_A)
    A = numpy.array(A_values).reshape(m_A, n)

#build polyhedron (right-hand side vectors d and b do not affect set of circuits)
P = Polyhedron(B=B, d=None, A=A, b=None)
print('enumerating set of circuits C(A,B) for randomly generated A and B: ')
print('A = ' + str(A))
print('B = ' + str(B))
print('\ntesting naive method:')
start = timeit.default_timer()
circuits = P.naive_circuit_enumeration()
stop = timeit.default_timer()
print('number of circuits: ' + str(len(circuits)))
print('runtime: ' + str(round(stop - start, 3)) + ' seconds')
print('circuits:')
for g in circuits:
    print g

print('\ntesting standard form method:')
start = timeit.default_timer()
Exemple #9
0
#b = numpy.array([0])
A = None
b = None

B = numpy.array([[-1, 0, 0], [0, 0, -1], [0, -1, -1], [0, -1, 0], [2, 1, 1],
                 [3, 3, -1]])

d = numpy.array([0, 0, 2, 4, 6, 8])

m_B, n = B.shape
m_A = 0
#m_A = A.shape[0]

c = numpy.array([-8, -1, -5])

P = Polyhedron(B=B, d=d, A=A, b=b)

x_initial = numpy.array([0, 0, 0])

print('\nstrictly feasible circuits:')
circuits = P.get_strictly_feasible_circuits(x=x_initial)
for g in circuits:
    print g

g, steepness = P.get_steepest_descent_circuit([0, 0, 0], c=c)

print('\nobjective f: ')
print(c)
print('steepest-descent circuit:')
print(g)
print('steepness:')
Exemple #10
0
    def createPolyhedron(self, parent=None, name=None):
        """Create a polyhedron from the current set of faces.

        Returns the Polyhedron object.
        """

        # Build lookup tables (so that only the verts that are really
        # required are stored in the Polyhedron)
        #
        # Key: Original vertex index - Value: New vertex index
        vert_lut = {}
        has_normals = True
        has_tverts = True
        iv = 0
        for f in self.faces:
            for v,tv,n in f:
                if v not in vert_lut:
                    vert_lut[v] = iv
                    iv+=1
                if tv==None:
                    has_tverts = False
                if n==None:
                    has_normals = False

        numpolys = len(self.faces)
        numverts = len(vert_lut)

        pg = PolyhedronGeom()
        pg.verts.resize(numverts)
        pg.setNumPolys(numpolys)

        # Set vertices
        for v in vert_lut:
            newidx = vert_lut[v]
            pg.verts[newidx] = self.verts[v]

        # Set polys (this has to be done *before* any FACEVARYING variable
        # is created, otherwise the size of the variable wouldn't be known)
        idx = 0
        for i,f in enumerate(self.faces):
            loop = []
            for v,tv,n in f:
                loop.append(vert_lut[v])
            pg.setPoly(i,[loop])

        # Create variable N for storing the normals
        if has_normals:
            pg.newVariable("N", FACEVARYING, NORMAL)
            N = pg.slot("N")
            idx = 0
            for f in self.faces:
                for v,tv,n in f:
                    N[idx] = self.normals[n]
                    idx += 1

        # Set texture vertices
        if has_tverts:
            pg.newVariable("st", FACEVARYING, FLOAT, 2)
            st = pg.slot("st")
            idx = 0
            for f in self.faces:
                for v,tv,n in f:
                    st[idx] = self.tverts[tv]
                    idx += 1

        obj = Polyhedron(name=name, parent=parent)
        obj.geom = pg
        # Set the materials
        self.initMaterial(obj)
        return obj
Exemple #11
0
import numpy
import timeit

from polyhedron import Polyhedron

n = 7  #number of variables
m_B = 14  #number of inequality constraints

#randomly generate matrix for a full-dimensional polyhedron
B_values = numpy.random.randint(low=-10, high=10, size=n * m_B)
B = numpy.array(B_values).reshape(m_B, n)

#build polyhedron
P = Polyhedron(B=B, d=None, A=None, b=None)

#randomly generate a vector to determine sign-compatibility direction
u = numpy.random.randint(low=-10, high=10, size=n)
u = numpy.array(u).reshape(n)
B_u = B.dot(u)

print('\nB = ' + str(B))
print('sign: ' + str(B_u))

print('\ntesting naive method:')
start = timeit.default_timer()
circuits = P.naive_circuit_enumeration()
stop = timeit.default_timer()

#post-processing for finding sign-compatible circuits
sign_compatible_circuits = []
for g in circuits:
Exemple #12
0
    def createPolyhedron(self, parent=None, name=None):
        """Create a polyhedron from the current set of faces.

        Returns the Polyhedron object.
        """

        # Build lookup tables (so that only the verts that are really
        # required are stored in the Polyhedron)
        #
        # Key: Original vertex index - Value: New vertex index
        vert_lut = {}
        has_normals = True
        has_tverts = True
        iv = 0
        for f in self.faces:
            for v, tv, n in f:
                if v not in vert_lut:
                    vert_lut[v] = iv
                    iv += 1
                if tv == None:
                    has_tverts = False
                if n == None:
                    has_normals = False

        numpolys = len(self.faces)
        numverts = len(vert_lut)

        pg = PolyhedronGeom()
        pg.verts.resize(numverts)
        pg.setNumPolys(numpolys)

        # Set vertices
        for v in vert_lut:
            newidx = vert_lut[v]
            pg.verts[newidx] = self.verts[v]

        # Set polys (this has to be done *before* any FACEVARYING variable
        # is created, otherwise the size of the variable wouldn't be known)
        idx = 0
        for i, f in enumerate(self.faces):
            loop = []
            for v, tv, n in f:
                loop.append(vert_lut[v])
            pg.setPoly(i, [loop])

        # Create variable N for storing the normals
        if has_normals:
            pg.newVariable("N", FACEVARYING, NORMAL)
            N = pg.slot("N")
            idx = 0
            for f in self.faces:
                for v, tv, n in f:
                    N[idx] = self.normals[n]
                    idx += 1

        # Set texture vertices
        if has_tverts:
            pg.newVariable("st", FACEVARYING, FLOAT, 2)
            st = pg.slot("st")
            idx = 0
            for f in self.faces:
                for v, tv, n in f:
                    st[idx] = self.tverts[tv]
                    idx += 1

        obj = Polyhedron(name=name, parent=parent)
        obj.geom = pg
        # Set the materials
        self.initMaterial(obj)
        return obj
Exemple #13
0
def main(mps_fn='',
         results_dir='results',
         max_time=300,
         sd_method='dual_simplex',
         reset=False,
         partition_polytope=False,
         n=0,
         k=0,
         spindle=False,
         spindle_dim=0,
         n_cone_facets=0,
         n_parallel_facets=0):

    if mps_fn:
        print('Reading {}...'.format(mps_fn))
        c, B, d, A, b = read_mps_preprocess(mps_fn)
        print('Building polyhedron...')
        P = Polyhedron(B, d, A, b, c)
    elif partition_polytope:
        print('Constructing partition polytope with n={} and k={}'.format(
            n, k))
        # randomly generate cluster size bounds and objective function
        v1 = np.random.randint(0, n, size=k)
        v2 = np.random.randint(0, n // k, size=k)
        ub = [max(v1[i], v2[i]) for i in range(k)]
        lb = [min(v1[i], v2[i]) for i in range(k)]
        c = np.random.randint(0, 1000, size=n * k)
        P = PartitionPolytope(n, k, ub, lb, c)
    elif spindle:
        print('Constructing spindle with dimension n={}, with {} cone facets,'
              'and with {} pairs of parallel facets'.format(
                  spindle_dim, n_cone_facets, n_parallel_facets))
        P = Spindle(spindle_dim, n_cone_facets, n_parallel_facets)
        c = P.c
    else:
        raise RuntimeError('Provide arguments for constructing polyhedron.')

    print('Finding feasible solution...')
    x_feasible = P.find_feasible_solution(verbose=False)
    if partition_polytope or spindle:
        print('Building gurobi model for simplex...')
        P.build_gurobi_model(c=c)
        P.set_solution(x_feasible)

    print('\nSolving with simplex method...')
    lp_result = P.solve_lp(verbose=False, record_objs=True)
    print('\nSolution using simplex method:')
    print(lp_result)

    print('\nSolving with steepest descent...')
    sd_result = sdac(P,
                     x_feasible,
                     c=c,
                     method=sd_method,
                     max_time=max_time,
                     reset=reset)
    print('\nSolution for {} using steepest-descent augmentation:'.format(
        os.path.basename(mps_fn)))
    print(sd_result)

    if results_dir:
        if not os.path.exists(results_dir): os.mkdir(results_dir)
        if mps_fn:
            prefix = os.path.basename(mps_fn).split('.')[0]
        elif partition_polytope:
            prefix = 'n-{}_k-{}'.format(n, k)
        elif spindle:
            prefix = 'n-{}_c-{}_p-{}'.format(spindle_dim, n_cone_facets,
                                             n_parallel_facets)
        lp_fn = os.path.join(results_dir, prefix + '_lp.p')
        sd_fn = os.path.join(results_dir, prefix + '_sd.p')
        lp_result.save(lp_fn)
        sd_result.save(sd_fn)
Exemple #14
0
    def importFile(self, filename, invertfaces=False):
        """Import an OFF file.

        If invertfaces is True the orientation of each face is reversed.
        """

        self.invertfaces = invertfaces

        self.texcoord_flag = False
        self.color_flag = False
        self.normal_flag = False
        self.four_flag = False
        self.ndim_flag = False
        self.ndim = 3
        self.is_trimesh = True

        self.fhandle = file(filename)

        # Read the header
        z = self.readLine()
        self.parseHeaderKeyWord(z)

        # nOFF?
        if self.ndim_flag:
            # Read the dimension of vertices
            z = self.readLine()
            self.ndim = int(z)
            if self.ndim > 3:
                raise ValueError(
                    "A vertex space dimension of %d is not supported" %
                    (self.ndim))

        # Read the number of vertices and faces...
        z = self.readLine().split(" ")
        self.numverts = int(z[0])
        self.numfaces = int(z[1])

        # Start with a TriMeshGeom
        # (this will be later converted into a PolyhedronGeom if faces
        # with more than 3 vertices are encountered)
        self.geom = TriMeshGeom()
        self.geom.verts.resize(self.numverts)
        self.geom.faces.resize(self.numfaces)

        # Read the vertices...
        self.readVertices()

        # Read the faces...
        self.readFaces()

        self.fhandle.close()

        # Create the actual object...
        nodename = os.path.basename(filename)
        nodename = os.path.splitext(nodename)[0]
        nodename = nodename.replace(" ", "_")
        if self.is_trimesh:
            n = TriMesh(name=nodename)
        else:
            n = Polyhedron(name=nodename)
        n.geom = self.geom
    import unittest
else:
    import unittest2 as unittest

from polyhedron import Polyhedron

# Sample polyhedra ############################################################

# Regular tetrahedron.
tetrahedron = Polyhedron(
    vertex_positions=[
        (0, 0, 0),
        (0, 1, 1),
        (1, 0, 1),
        (1, 1, 0),
    ],
    triangles=[
        [0, 1, 3],
        [0, 2, 1],
        [0, 3, 2],
        [1, 2, 3],
    ],
)


def tetrahedron_classify(point):
    x, y, z = point
    if x + y + z < 2 and x + y > z and x + z > y and y + z > x:
        return "inside"
    if x + y + z <= 2 and x + y >= z and x + z >= y and y + z >= x:
        return "boundary"
    return "outside"
Exemple #16
0
def main(args):
    if args.genus == 0 and args.punctures == 6:
        common = dict(
            T=curver.load(0, 6).triangulation,
            P=Polyhedron(
                eqns=[],
                ieqs=[
                    [0, 1, 0, 1, -2, 0, 0],  # 1 + 3 - 4 - 4
                    [0, -1, 1, 0, 2, 0, 0],  # -1 + 2 + 4 + 4
                    [0, 1, 1, 0, 0, 0, -1],  # 1 + 2 - 6
                    [0, -1, 0, 0, 1, 0, 1],  # 4 + 6 - 1
                    [args.upper, -4, -8, -5, -4, -5, -2],
                    [-args.lower, 4, 8, 5, 4, 5, 2],
                ] + [[-1] + [0] * i + [1] + [0] * (6 - i - 1)
                     for i in range(6)]),
            embedding=np.array([
                [1, 0, 1, -1, 0, 0],
                [1, 0, 1, 0, 0, 0],
                [1, 1, 0, 0, 0, 0],
                [1, 1, 0, 0, 1, -1],
                [1, 0, 1, -2, 0, 0],
                [-1, 1, 0, 2, 0, 0],
                [-1, 1, 0, 2, 1, 1],
                [0, 1, 0, 1, 1, 0],
                [0, 0, 0, 1, 0, 0],
                [0, 1, 1, 0, 0, 0],
                [0, 0, 0, 0, 1, 1],
                [-1, 0, 0, 1, 0, 1],
            ],
                               dtype=object),
            closed=False,
        )
    elif args.genus == 2 and args.punctures == 0:
        common = dict(
            T=curver.load(2, 1).triangulation,
            P=Polyhedron(eqns=[],
                         ieqs=[
                             [-1, 1, 1, 1, 0, 0, -1],
                             [-1, -1, -1, -1, 1, 1, 1],
                             [args.upper, -7, -8, -7, -5, -5, -6],
                             [-args.lower, 7, 8, 7, 5, 5, 6],
                         ] + [[-1] + [0] * i + [1] + [0] * (6 - i - 1)
                              for i in range(6)]),
            embedding=np.array([
                [2, 2, 2, 0, 0, 0],
                [0, 0, 0, 1, 1, 2],
                [0, 0, 0, 1, 1, 0],
                [0, 0, 0, 0, 1, 1],
                [0, 0, 0, 1, 0, 1],
                [1, 2, 1, 0, 0, 0],
                [1, 0, 1, 0, 0, 0],
                [0, 1, 1, 0, 0, 0],
                [1, 1, 0, 0, 0, 0],
            ]),
            closed=True,
        )
    elif args.genus == 2 and args.punctures == 1:
        common = dict(
            T=curver.load(2, 1).triangulation,
            P=Polyhedron(
                eqns=[],
                ieqs=[
                    [0, 1, 1, 0, -1, 0, 0, 0, 0],  # 1 + 2 - 4
                    [0, 0, -1, 1, 1, 0, 0, 0, 0],  # 3 + 4 - 2
                    [0, 0, 0, 0, 0, 1, 1, 0, -1],  # 5 + 6 - 8
                    [0, 0, 0, 0, 0, 0, -1, 1, 1],  # 7 + 8 - 6
                    [0, 0, 0, -1, -1, 0, 0, 1, 1],  # 7 + 8 - 3 - 4
                    [0, 0, 0, 1, 1, 0, -1, 0, 1],  # 3 + 4 + 8 - 6
                    [0, 0, 0, 1, 1, 0, 1, 0, -1],  # 3 + 4 + 6 - 8
                    [args.upper, -11, -9, -9, -2, -9, -6, -6, -2],
                    [-args.lower, 11, 9, 9, 2, 9, 6, 6, 2],
                ] + [[-1] + [0] * i + [1] + [0] * (8 - i - 1)
                     for i in range(8)]),
            embedding=np.array(
                [
                    [0, 0, 2, 2, 0, 0, 0, 0],  # 3 + 3 + 4 + 4
                    [0, 1, 1, 0, 0, 0, 0, 0],  # 2 + 3
                    [0, -1, 1, 2, 0, 0, 0, 0],  # 3 + 4 + 4 - 2
                    [1, 0, 1, 0, 0, 0, 0, 0],  # 1 + 3
                    [1, 1, 0, 0, 0, 0, 0, 0],  # 1 + 2
                    [0, 0, 0, 0, 0, 1, 1, 0],  # 6 + 7
                    [0, 0, 0, 0, 0, -1, 1, 2],  # 7 + 8 + 8 - 6
                    [0, 0, 0, 0, 1, 0, 1, 0],  # 5 + 7
                    [0, 0, 0, 0, 1, 1, 0, 0],  # 5 + 6
                ],
                dtype=object),
            closed=False,
        )
    elif args.genus == 3 and args.punctures == 0:
        common = dict(
            T=curver.load(3, 1).triangulation,
            P=Polyhedron(
                eqns=[],
                ieqs=[
                    #    a1, b1, c1, a2, b2, c2, a3, b3, c3,  x,  y,  z
                    [-1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, +1, +1],
                    [-2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, +1, +1],
                    [-2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, +1, +1],
                    [-2, +2, +2, +2, 0, 0, 0, 0, 0, 0, 0, -1, -1],
                    [-1, 0, 0, 0, 0, -1, -1, 0, 0, 0, +1, 0, +1],
                    [-2, 0, 0, 0, 0, -2, 0, 0, 0, 0, +1, 0, +1],
                    [-2, 0, 0, 0, 0, 0, -2, 0, 0, 0, +1, 0, +1],
                    [-2, 0, 0, 0, +2, +2, +2, 0, 0, 0, -1, 0, -1],
                    [-1, 0, 0, 0, 0, 0, 0, 0, -1, -1, +1, +1, 0],
                    [-2, 0, 0, 0, 0, 0, 0, 0, -2, 0, +1, +1, 0],
                    [-2, 0, 0, 0, 0, 0, 0, 0, 0, -2, +1, +1, 0],
                    [-2, 0, 0, 0, 0, 0, 0, +2, +2, +2, -1, -1, 0],
                    [
                        args.upper, -4, -2, -2, -4, -2, -2, -4, -2, -2, -6, -6,
                        -6
                    ],
                    [
                        -args.lower, +4, +2, +2, +4, +2, +2, +4, +2, +2, +6,
                        +6, +6
                    ],
                ] + [[-1] + [0] * i + [1] + [0] * (12 - i - 1)
                     for i in range(12)]),
            embedding=np.array([
                #a1, b1, c1, a2, b2, c2, a3, b3, c3,  x,  y,  z
                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +1, +1],  # 0
                [0, -1, -1, 0, 0, 0, 0, 0, 0, 0, +1, +1],  # 1
                [0, +1, +1, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 2
                [+1, 0, +1, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 3
                [+1, +1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 4
                [0, 0, 0, 0, 0, 0, 0, 0, 0, +1, 0, +1],  # 5
                [0, 0, 0, 0, -1, -1, 0, 0, 0, +1, 0, +1],  # 6
                [0, 0, 0, 0, +1, +1, 0, 0, 0, 0, 0, 0],  # 7
                [0, 0, 0, +1, 0, +1, 0, 0, 0, 0, 0, 0],  # 8
                [0, 0, 0, +1, +1, 0, 0, 0, 0, 0, 0, 0],  # 9
                [0, 0, 0, 0, 0, 0, 0, 0, 0, +1, +1, 0],  # 10
                [0, 0, 0, 0, 0, 0, 0, -1, -1, +1, +1, 0],  # 11
                [0, 0, 0, 0, 0, 0, 0, +1, +1, 0, 0, 0],  # 12
                [0, 0, 0, 0, 0, 0, +1, 0, +1, 0, 0, 0],  # 13
                [0, 0, 0, 0, 0, 0, +1, +1, 0, 0, 0, 0],  # 14
            ]),
            closed=True,
        )
    else:
        raise ValueError(
            f'Intrinsic coordinates not known for S_{args.genus},{args.punctures}'
        )

    iterable = (dict() for _ in count())
    process(func, common, iterable, cores=args.cores, path=args.output)
Exemple #17
0
    n_paths = len(paths)
    with open(filename, 'w') as f:
        f.write("%s\n" % n_paths)
        for path in paths:
            f.write("%s\n" % len(path))
            for point in path:
                f.write("%s %s %s\n" % (point[0], point[1], point[2]))


if __name__ == "__main__":
    # p1 = Polyhedron(filelist=["../data/test/unit_cube_open.fold", "../data/test/rect_box.fold"])
    # p = Polyhedron(filelist=["../data/test_case6.fold"])
    # print unfold_polyhedron(p1, p1.unfolding_tree)
    # print p.unfolding_tree.children_bridges
    # unfold_polyhedron(p, p.unfolding_tree)
    # print p.unfolding_tree.children[0].children
    # p.write_to_off("../out/poly.off")
    # write_cut_path(gather_cuts(p, p.unfolding_tree), "../out/cuts.txt")
    if len(sys.argv) != 2:
        print "Usage: pass as argument a .fold file containing a orthogonal polyhedron"
    else:
        p = Polyhedron(filelist=[sys.argv[1]])
        unfold_polyhedron(p, p.unfolding_tree)
        polyhedron_file = "../out/poly.off"
        cut_file = "../out/cuts.txt"
        exe_file = "../viewer/build/viewer"
        p.write_to_off(polyhedron_file)
        write_cut_path(gather_cuts(p, p.unfolding_tree), cut_file)
        print "here"
        os.system("cat %s %s | %s" % (polyhedron_file, cut_file, exe_file))