def test_scale_1(self):
        one = Polynomial([2,4,7,3])
        scalar = 12

        r = one.scale(12)

        self.assertEqual(list(r.coefficients), [24, 48, 84, 36])
    def test_scale(self):
        one = Polynomial(map(GF2int, [2,14,7,3]))
        scalar = 12

        r = one.scale(12)

        self.assertEqual(list(r.coefficients), [24, 72, 36, 20])
    def test_mul_at(self):
        one = Polynomial(map(GF2int, [2,4,7,3]))
        two = Polynomial(map(GF2int, [5,2,4,2]))
        k = 3

        r1 = one * two
        r2 = one.mul_at(two, k)

        self.assertEqual(r1.get_coefficient(k), r2)
Exemple #4
0
def polynomialbasin(coeffs, vw, auto=False, n=10, dots=True, mode=1, filename=None, save=True):
    p = Polynomial(*coeffs)
    rootlist = list(p.roots())
    rootlist.sort(cmp=argcmp)
    if auto:
        vw.autocomplex(*rootlist)
    if filename is None:
        filename = "polynomialbasin {poly} {n} {dots} {time}".format(poly=p, n=n, dots=dots, time=str(int(time())))
    return globals()["basin" + str(mode) * (mode in (2, 3))](p, rootlist, Color.colors(len(rootlist)), vw, p.deriv(), n,
                                                             dots, filename, save)
    def test_div_fast(self):
        one = Polynomial(map(GF2int,     [8,3,5,1]))
        two = Polynomial(map(GF2int, [5,3,1,1,6,8]))

        q, r = two._fastdivmod(one)
        self.assertEqual(list(q.coefficients), [101, 152, 11])
        self.assertEqual(list(r.coefficients), [183, 185, 3])

        # Make sure they multiply back out okay
        self.assertEqual(q*one + r, two)
    def test_div_fast_1(self):
        # no remander
        one = Polynomial([1,0,0,2,2,0,1,-2,-4])
        two = Polynomial([1,0,-1])

        q, r = one._fastdivmod(two)
        self.assertEqual(q, one._fastfloordiv(two))
        self.assertEqual(r, one._fastmod(two))

        self.assertEqual(list(q.coefficients), [1,0,1,2,3,2,4])
        self.assertEqual(list(r.coefficients), [0])
Exemple #7
0
def main(argv):
    inputfile = ''
    outputfile = ''
    try:
        opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])
    except getopt.GetoptError:
        print 'single.py -i <inputfile> -o <outputfile>'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'single.py -i <inputfile> -o <outputfile> '
            sys.exit()
        elif opt in ("-i", "--ifile"):
            inputfile = arg
        elif opt in ("-o", "--ofile"):
            outputfile = arg
    
    try:
        fi = open(inputfile,"r")
        fl = open(outputfile,"a")
    except IOError:
        print 'main.py -i <inputfile> -o <outputfile>'
        sys.exit(2)
    l = []
    for i in fi:
        p = Polynomial(i)
        l.append(p)

    name = outputfile
    name = name + ".xlsx"
    name = "" + name
    workbook = xlsxwriter.Workbook(name)
    worksheet = workbook.add_worksheet("irredutiveis")
    worksheet.write(0,0, "Polynomials")
    worksheet.write(0,1, "m")
    worksheet.write(0,2, "a")
    worksheet.write(0,3, "b")
    worksheet.write(0,4, "c")
    worksheet.write(0,5, "d")
    row = 1
    colum = 0
   
    for p in l:
    	colum = 0
    	worksheet.write(row,colum, str(p.coefs()))
    	colum = 1
    	j = sorted(p.coefs(), reverse=True)
    	for num in j:
    		worksheet.write(row,colum, num)
    		colum = colum+1
    	row = row + 1

    workbook.close()
Exemple #8
0
def main(argv):
    inputfile = ''
    outputfile = ''
    debug = False
    try:
        opts, args = getopt.getopt(argv,"hi:o:d",["ifile=","ofile="])
    except getopt.GetoptError:
        print 'single.py -i <inputfile> -o <outputfile>'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'single.py -i <inputfile> -o <outputfile> -d for debug'
            sys.exit()
        elif opt in ("-d", "--debug"):
            debug = True
        elif opt in ("-i", "--ifile"):
            inputfile = arg
        elif opt in ("-o", "--ofile"):
            outputfile = arg
        

    try:
        fi = open(inputfile,"r")
        fl = open(outputfile,"a")
    except IOError:
        print 'main.py -i <inputfile> -o <outputfile>'
        sys.exit(2)
    l = []
    pols = []
    files = [inputfile]
    for fileName in files:
        save = outputfile
        f = open(fileName,'r')

        #read, pols = recoverfile(save, f)
        if True:
            for line in f:
                try:
                    pol = Polynomial(line)
                    pols.append(pol)
                except Exception as e:
                    print line
                    sys.exit(2)
    result = defaultdict(list)
    print len(pols)
    for pol in pols:
        if len(pol.coefs()) > 1:
            red = Reduction(debug)
            count = red.reduction(pol.coefs())
            result =  str(pol.coefs()) + ":" + str(count)
            print result
            fl.write(result + "\n")
	def test_simple_operations(self):
		"""tests with some specific polynomials"""
		p1 = Polynomial([2.,0,3.,0]) # 2 + 3x^2
		self.assertEqual(str(p1), '2.0 + 3.0X^2')
		self.assertEqual(repr(p1), 'Polynomial([2.0, 0.0, 3.0])')
		p2 = Polynomial([3.,2.]) #3 + 2x
		self.assertEqual(str(p2), '3.0 + 2.0X')
		self.assertEqual(p1.degree(), 2)
		self.assertEqual(p1[4], 0, "Index out of range should return zero")
		self.assertEqual(p1[0], 2)
		self.assertEqual(p1+p2, Polynomial([5,2,3]))
		self.assertEqual(p1.differentiate(), Polynomial([0,6]))
		self.assertEqual(p1(2), 14)
		self.assertEqual(p1*p2, Polynomial([6., 4., 9., 6.]))
Exemple #10
0
def recover(shares, pword=""):
    #Intial Stuff
    intmod.set_base(59)
    #Construct key, If no password is provided, default password of "" is used
    seclen=len(shares[0])-1
    if pword:
        key=genpad(seclen,pword)
    else:
        key=[intmod(0) for c in xrange(seclen)]
       
     
    #Catch errors Two keys for the same point
    lsh=len(shares)
    xs=[intmod(b58conv(shares[i][-1])) for i in xrange(lsh)]
    todel=[]
    for i in xrange(lsh-1):
        for j in xrange(i+1,lsh):
            if xs[i]==xs[j]:
                if j not in todel:
                    todel.append(j)
    d=0
    todel=sorted(todel,reverse=True)
    for  i in todel:
        del xs[i]
        del shares[i]
        d=d+1
    lsh=lsh-d
      
    #Construct the Lagrange Polynomials (These are the same for all elements)
    l=[]
    for i in xrange(lsh):
        lt=Polynomial(x0=intmod(1))
        for j in xrange(lsh):
            if i != j:
                if (xs[i]-xs[j])==intmod(0):
                    raise ValueError("Two of your keys are for identical points please remedy this")
                lt=lt*(Polynomial(x1=intmod(1),x0=-xs[j]))
                lt=lt//Polynomial(x0=(xs[i]-xs[j]))
        l.append(lt)
    #Reconstruct Secret (To best knowledge), Completes Lagrange integration for each character
    #Evaluates at 0 and converts into a base 58 character
    
    rect=[]
    for i in xrange(seclen):
        p=Polynomial(x0=intmod(0))
        for j in xrange(lsh):
            p=p+Polynomial(x0=(b58conv(shares[j][i])))*l[j]
        rect.append(r58conv(p.evaluate(intmod(0))-key[i%64]))
    return "".join(rect)
Exemple #11
0
    def test_div_gffast(self):
        one = Polynomial(map(GF2int,     [1,3,5,1])) # must be monic! (because the function is optimized for monic divisor polynomial)
        two = Polynomial(map(GF2int, [5,3,1,1,6,8]))
        
        q, r = two._gffastdivmod(one) # optimized for monic divisor polynomial

        q2, r2 = two._fastdivmod(one)
        self.assertEqual(q, q2)
        self.assertEqual(r, r2)

        self.assertEqual(list(q.coefficients), [5, 12, 4])
        self.assertEqual(list(r.coefficients), [52, 30, 12])

        # Make sure they multiply back out okay
        self.assertEqual(q*one + r, two)
Exemple #12
0
    def test_orientation_reprojection(self):
        true_s = np.array([.1, .2, -.3])
        true_r = utils.cayley(true_s)
        true_k = 1. / (1. + np.dot(true_s, true_s))
        true_vars = np.r_[true_s, true_k]

        xs = np.random.rand(8, 3)
        true_ys = np.dot(xs, true_r.T)

        sym_vars = Polynomial.coordinates(4, ctype=float)
        x, y, z, w = sym_vars
        sym_s = sym_vars[:3]
        sym_k = sym_vars[3]
        sym_r = utils.cayley_mat(sym_s)
        sym_rd = utils.cayley_denom(sym_s)

        residuals = (np.dot(xs, sym_r.T) - true_ys * sym_rd).flatten()
        cost = sum(r**2 for r in residuals)
        gradients = cost.partial_derivatives()
        constraint = sym_k * (1 + np.dot(sym_s, sym_s)) - 1

        print 'Cost:', cost
        print 'Constraint:', constraint
        print 'At ground truth:'
        print '  Cost = ', cost(*true_vars)
        print '  Constraint = ', constraint(*true_vars)
        print '  Gradients = ', [p(*true_vars) for p in gradients]
        expansions = [solvers.all_monomials(sym_vars, 2) for _ in range(cost.num_vars)]
        for a in expansions:
            a.extend([z*z*w, x*x*w, y*y*w, z*z*w*w, z*w*w])
        minima = optimize.minimize_globally(cost,
                                            [constraint],
                                            expansions=expansions,
                                            diagnostic_solutions=[true_vars])
        print 'Minima: ', minima
def test_ntt_mul():
	global w,wInv
	print "test_ntt_mul"

	powers2 = [pow(2,i) for i in range(1,19)]

	for N in powers2:
		print N
		
		k = (P-1)/(2*N)
		assert (P-1)%(2*N) == 0
		wN = pow(7,k,P)
		assert pow(wN,(2*N),P) == 1
		
		w = []
		for j in range(2*N):
			w.append(pow(wN,j,P))
		wInv = []
		for j in range(2*N):
			wInv.append(pow(w[j],P-2,P))

		a = [randint(0,2**16) for _ in xrange(N)]+[0]*N
		b = [randint(0,2**16) for _ in xrange(N)]+[0]*N

		polynomial_a = Polynomial()	
		polynomial_a.coef = a
		polynomial_b = Polynomial()
		polynomial_b.coef = b

		polynomial_c = polynomial_a*polynomial_b

		my_ntt_a = CPU_NTT(a)
		my_ntt_b = CPU_NTT(b)
		my_ntt_c = [x[0]*x[1] % P for x in zip(my_ntt_a,my_ntt_b)]

		ntt_intt_c = CPU_INTT(my_ntt_c)

		# assert len(ntt_intt_c) == len(polynomial_c.coef)
		for i,v in enumerate(polynomial_c.coef):
			v2 = ntt_intt_c[i]/(2*N)
			assert v == v2
	print "We are good"	
Exemple #14
0
 def test_two_vars(self):
     x, y = Polynomial.coordinates(2)
     equations = [x**2 + y**2 - 1,
                  x-y]
     expansion_monomials = [
         [x, y],
         [x, y, x*y, x*x, y*y]
     ]
     result = solvers.solve_via_basis_selection(equations, expansion_monomials, x+y+1)
     expected_solutions = [np.sqrt([.5, .5]), -np.sqrt([.5, .5])]
     self.assert_solutions_found(result, expected_solutions)
Exemple #15
0
    def test_estimate_pose_and_depths(self):
        np.random.seed(0)
        num_landmarks = 5

        # Generate ground truth
        true_cayleys = np.array([.1, .2, -.3])
        true_orientation = utils.cayley(true_cayleys)
        true_position = np.array([2., 3., 10.])

        # Generate observed quantities
        true_landmarks = np.random.randn(num_landmarks, 3)
        true_pfeatures = np.dot(true_landmarks - true_position, true_orientation.T)
        true_depths = np.sqrt(np.sum(np.square(true_pfeatures), axis=1))
        true_features = true_pfeatures / true_depths[:, None]
        true_vars = np.hstack((true_orientation.flatten(), true_position, true_depths))

        # Create symbolic quantities
        sym_vars = Polynomial.coordinates(12 + num_landmarks, ctype=float)
        sym_orientation = np.reshape(sym_vars[:9], (3, 3))
        sym_position = np.array(sym_vars[9:12])
        sym_depths = np.array(sym_vars[12:])

        residuals = []
        for i, (landmark, feature, sym_depth) in enumerate(zip(true_landmarks, true_features, sym_depths)):
            residual = np.dot(sym_orientation, landmark - sym_position) - sym_depth * feature
            residuals.extend(residual)

        constraints = (np.dot(sym_orientation.T, sym_orientation) - np.eye(3)).flatten()

        cost = sum(r**2 for r in residuals)
        gradients = cost.partial_derivatives()

        print 'Cost:', cost
        print 'Constraints:'
        for constraint in constraints:
            print '  ', constraint

        print 'At ground truth:'
        print '  Cost = ', cost(*true_vars)
        print '  Constraints = ', utils.evaluate_array(constraints, *true_vars)
        print '  Gradients = ', [p(*true_vars) for p in gradients]
        expansions = solvers.all_monomials(sym_vars, 2)
        minima = optimize.minimize_globally(cost,
                                            constraints,
                                            expansions=expansions,
                                            #diagnostic_solutions=[true_vars],
                                            )

        estimated_r = np.reshape(minima, (3, 3))
        error = np.linalg.norm(estimated_r - true_orientation)

        print 'Minima:\n', estimated_r
        print 'Ground truth:\n', true_orientation
        print 'Error:', error
Exemple #16
0
 def test_synthetic_ideal(self):
     zeros = [[-2., -3., 5., 6.], [4.5, 5., -1., 8.]]
     equations = ideal_from_variety(zeros, ctype=float)
     coords = Polynomial.coordinates(len(zeros[0]))
     expansion_monomials = solvers.all_monomials(coords, degree=1)
     lambda_poly = sum(xi * (i + 1) for i, xi in enumerate(coords)) + 1
     result = solvers.solve_via_basis_selection(
         equations,
         expansion_monomials,
         lambda_poly,
         diagnostic_solutions=[zeros[0]])
     self.assert_solutions_found(result, zeros)
Exemple #17
0
def main(argv):
    inputfile = ''
    outputfile = ''
    ka = ''
    try:
      opts, args = getopt.getopt(argv,"hi:o:k:",["ifile=","ofile=",])
    except getopt.GetoptError:
      print 'extract.py -i <inputfile> -o <outputfile> -k 1,2,3,4,5,...'
      sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'extract.py -k 1,2,3,4,5,... -i <inputfile> -o <outputfile> '
            sys.exit()
        elif opt in ("-i", "--ifile"):
            print "-i", arg
            inputfile = arg
        elif opt in ("-o", "--ofile"):
            print "-o", arg + "_" + str(ka)
            outputfile = arg + "_" + str(ka)
        elif opt in ("-k"):
            print "ka = ", arg
            ka = arg



    try:
        f = open(inputfile,'r')
    except IOError:
        print 'Error to open the file'
        print 'ka.py -i <inputfile> -o <outputfile> -k 1,2,3,4,5,6,...'
        sys.exit(2)


    to_save = open(outputfile,"a")
    for line in f:
        pol = Polynomial(line)
        l = sorted(pol.coefs(), reverse=True)
        k = math.floor((l[0]-2)/(l[0]-l[1]))
        if k == int(ka):
            to_save.write(line)
Exemple #18
0
 def test_two_circles(self):
     x, y = Polynomial.coordinates(2)
     equations = [
         (x+2)**2 + (y+2)**2 - 25,
         (x-6)**2 + (y+2)**2 - 25,
     ]
     expansion_monomials = [x, y, x*y, x*x, y*y, x*x*y]
     expected_solutions = [(2, 1), (2, -5)]
     result = solvers.solve_via_basis_selection(equations,
                                                expansion_monomials,
                                                x+2*y-3,
                                                diagnostic_solutions=expected_solutions)
     self.assert_solutions_found(result, expected_solutions)
Exemple #19
0
def find_critical_points(polynomial, constraints=None, expansions=2, lambda_poly=None, seed=0, **kwargs):
    """Find all local minima, local maxima, and saddle points of the given polynomial by solving the first order
    conditions."""
    system = polynomial.astype(float).partial_derivatives()
    system = filter(lambda p: p.total_degree > 0, system)
    if constraints is not None:
        system.extend(constraints)
    coords = Polynomial.coordinates(polynomial.num_vars, ctype=float)
    if lambda_poly is None:
        rng = random.Random(seed)  # use this rng for repeatability
        lambda_poly = sum(p * rng.random() for p in coords) + rng.random()
    if isinstance(expansions, numbers.Integral):
        expansions = [solvers.all_monomials(coords, expansions)] * len(system)
    return solvers.solve_via_basis_selection(system, expansions, lambda_poly, **kwargs)
Exemple #20
0
def main(argv):
    inputfile = ''
    outputfile = ''
    debug = False
    try:
        opts, args = getopt.getopt(argv,"hi:o:d",["ifile=","ofile="])
    except getopt.GetoptError:
        print 'single.py -i <inputfile> -o <outputfile>'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'single.py -i <inputfile> -o <outputfile> -d for debug'
            sys.exit()
        elif opt in ("-d", "--debug"):
            debug = True
        elif opt in ("-i", "--ifile"):
            inputfile = arg
        elif opt in ("-o", "--ofile"):
            outputfile = arg
    try:
        fi = open(inputfile,"r")
        fl = open(outputfile,"a")
    except IOError:
        print 'main.py -i <inputfile> -o <outputfile>'
        sys.exit(2)
    pols = []
    for line in fi:
    	try:
    		pol = Polynomial(line)
    		pols.append(pol)
    	except Exception as e:
    		print line
    		sys.exit(2)
    for pol in pols:
    	st = str(pol.coefs()) + ":0" + "\n"
    	fl.write(st)
    fl.close()
Exemple #21
0
 def test_three_circles(self):
     x, y, z = Polynomial.coordinates(3)
     equations = [
         (x-6)**2 + (y-1)**2 + (z-1)**2 - 25,
         (x-1)**2 + (y-6)**2 + (z-1)**2 - 25,
         (x-1)**2 + (y-1)**2 + (z-6)**2 - 25,
     ]
     expansion_monomials = solvers.all_monomials((x, y, z), degree=2)
     expected_solutions = [(1, 1, 1)]
     lambda_poly = x + 2*y + 3*z + 4
     result = solvers.solve_via_basis_selection(equations,
                                                expansion_monomials,
                                                lambda_poly,
                                                diagnostic_solutions=expected_solutions)
     self.assert_solutions_found(result, expected_solutions)
Exemple #22
0
    def test_three_vars(self):
        x, y, z = Polynomial.coordinates(3)
        equations = [
            x**2 + y**2 + z**2 - 1,
            x - y,
            x - z
        ]
        expansion_monomials = [
            [],
            [x, y, z],
            [x, y, z]
        ]

        result = solvers.solve_via_basis_selection(equations, expansion_monomials, x)

        point = np.sqrt(np.ones(3) / 3.)
        expected_solutions = [point, -point]
        self.assert_solutions_found(result, expected_solutions)
Exemple #23
0
    def test_range_optimization_2d(self):
        np.random.seed(0)

        bases = np.round(np.random.randn(2, 3) * 6.)
        true_position = np.array([-2., 1., 3.])
        true_ranges = np.array([np.linalg.norm(base - true_position) for base in bases])
        true_vars = np.hstack((true_position, true_ranges))

        sym_vars = Polynomial.coordinates(3 + len(bases), float)
        sym_position = sym_vars[:3]
        sym_ranges = sym_vars[3:]

        cost = sum((zz - z)**2 for zz, z in zip(sym_ranges, true_ranges))
        constraints = [np.sum(np.square(base - sym_position)) - sym_range*sym_range
                       for base, sym_range in zip(bases, sym_ranges)]

        lagrangian = make_langrangian(-cost, constraints)
        gradients = lagrangian.partial_derivatives()

        print 'Cost:', cost
        print 'Lagrangian:', lagrangian
        print 'Constraints:'
        for constraint in constraints:
            print '  ', constraint
        print 'Gradients:'
        for gradient in gradients:
            print '  ', gradient

        print 'At ground truth:'
        print '  Cost = ', cost(*true_vars)
        print '  Constraints = ', utils.evaluate_array(constraints, *true_vars)
        #print '  Gradients = ', [p(*true_vars) for p in gradients]

        expansions = 3  # solvers.all_monomials(sym_vars, 2) + [sym_vars[2]**3, sym_vars[0]**2*sym_vars[2]]
        minima = optimize.minimize_globally(-lagrangian, [], expansions=expansions, verbosity=2,
                                            diagnostic_solutions=[], include_grobner=False)

        error = np.linalg.norm(minima - true_position)
        print minima
        print true_position
        print 'Error:', error
Exemple #24
0
    def test_estimate_orientation_9params(self):
        np.random.seed(0)

        true_s = np.array([.1, .2, -.3])
        true_r = utils.cayley(true_s)
        true_vars = true_r.flatten()

        observed_xs = np.random.rand(8, 3)
        observed_ys = np.dot(observed_xs, true_r.T)

        sym_vars = Polynomial.coordinates(9, ctype=float)
        sym_r = np.reshape(sym_vars, (3, 3))

        residuals = (np.dot(observed_xs, sym_r.T) - observed_ys).flatten()
        constraints = (np.dot(sym_r.T, sym_r) - np.eye(3)).flatten()

        cost = sum(r**2 for r in residuals)
        gradients = cost.partial_derivatives()

        print 'Cost:', cost
        print 'Constraints:'
        for constraint in constraints:
            print '  ', constraint

        print 'At ground truth:'
        print '  Cost = ', cost(*true_vars)
        print '  Constraints = ', utils.evaluate_array(constraints, *true_vars)
        print '  Gradients = ', [p(*true_vars) for p in gradients]
        expansions = [solvers.all_monomials(sym_vars, 2) for _ in range(cost.num_vars)]
        minima = optimize.minimize_globally(cost,
                                            constraints,
                                            expansions=expansions,
                                            #diagnostic_solutions=[true_vars],
                                            )

        estimated_r = np.reshape(minima, (3, 3))
        error = np.linalg.norm(estimated_r - true_r)

        print 'Minima:\n', estimated_r
        print 'Ground truth:\n', true_r
        print 'Error:', error
Exemple #25
0
    def test_optimize_2d(self):
        np.random.seed(0)
        x, y = Polynomial.coordinates(2, float)
        fs = [
            x+1,
            y+1,
            x*x,
        ]
        true_solution = np.array([2., 5.])
        cost = sum((f(x, y) - f(*true_solution)) ** 2 for f in fs)

        import matplotlib.pyplot as plt
        dX, dY = np.meshgrid(np.linspace(-.1, .1, 50), np.linspace(-.1, .1, 50))
        X = true_solution[0] + dX
        Y = true_solution[1] + dY * 1j
        Z = np.abs(cost(X, Y))
        print np.min(Z), np.max(Z)
        plt.contourf(dX, dY, Z, levels=np.logspace(np.log10(np.min(Z)), np.log10(np.max(Z)), 16))
        plt.plot(0, 0, 'mx')
        plt.show()
        return

        gradients = cost.partial_derivatives()
        print 'Cost:', cost
        print 'Residuals:'
        for f in fs:
            print f(x, y) - f(*true_solution)
        print 'Gradients:'
        for gradient in gradients:
            print '  ', gradient(*true_solution)
        print 'Jacobian:'
        print polynomial_jacobian(fs)(*true_solution)
        expansions = 3  # solvers.all_monomials(sym_vars, 2) + [sym_vars[2]**3, sym_vars[0]**2*sym_vars[2]]
        minima = optimize.minimize_globally(cost, expansions=expansions, verbosity=2, constraints=fs[:2],
                                            #diagnostic_solutions=[true_vars]
        )
        np.testing.assert_array_almost_equal(minima, true_solution)
Exemple #26
0
    def test_approx_equal(self):
        # test non-polynomial returns False
        self.assertFalse(Polynomial([1, 1]).approx_equal('Not A Polynomial'))

        # test exact match returns true
        p1 = Polynomial([1, 1])
        p2 = Polynomial([1, 1])

        self.assertTrue(p1.approx_equal(p2))

        # test "large difference" returns false
        p1 = Polynomial([1, 1])
        p2 = Polynomial([1, 2])

        self.assertFalse(p1.approx_equal(p2))

        p1 = Polynomial([1, 1])
        p2 = Polynomial([1, 1.000001])

        self.assertTrue(p1.approx_equal(p2, abs_tol=0.00001, rel_tol=1e-50))
        self.assertFalse(p1.approx_equal(p2, abs_tol=0.00000001,
                                         rel_tol=1e-50))

        p1 = Polynomial([2, 1.0, 1, 1.0, 0, 1.1])
        p2 = Polynomial([2, 1.001, 1, 1.01, 0, 1.101])

        self.assertTrue(p1.approx_equal(p2, abs_tol=0.011))
        self.assertFalse(p1.approx_equal(p2, abs_tol=0.01))
    def test_when_polynomial_is_constant(self):
        polynomial = Polynomial('8')

        expected_derivative = '0'

        self.assertEqual(polynomial.find_derivative(), expected_derivative)
    def test_when_polynomial_is_shuffled(self):
        polynomial = Polynomial('0-5x^2+2x-x^3')

        expected_derivative = '-3x^2-10x+2'

        self.assertEqual(polynomial.find_derivative(), expected_derivative)
Exemple #29
0
 def _lazy_get_scale_(self, ig, cosp=Polynomial.fromSeq((1,0,-1))):
     return (self**2 * cosp**self.__q).integral(-1, 0)(1) ** .5
Exemple #30
0
 def extend(self, element):
     """Opposite of project - returns a representation of @element in the extended field"""
     assert element in self._gf, "%r not in field %r" % (element, self._gf)
     pol = Polynomial(self._gf, [element])
     return self(pol)
Exemple #31
0
def test_polynomial_negate():
    f = Polynomial([1, 2, 3])
    assert_that((-f).coefficients).is_equal_to([-1, -2, -3])
Exemple #32
0
 def test_mul_with_number(self):
     self.assertEqual(Polynomial([3, 6, -12]), Polynomial([1, 2, -4]) * 3)
    def test_find_derivative(self):
        polynomial = Polynomial('5x^2-7x+0')

        expected_derivative = '10x-7'

        self.assertEqual(polynomial.find_derivative(), expected_derivative)
Exemple #34
0
from polynomial import Polynomial

poly1 = Polynomial()
poly2 = Polynomial()

data_file = open("data1.txt", "r")
data_list = data_file.readlines()
data_file.close()

for line in data_list:
    degree, coefficient = line.strip().split()
    poly1._appendTerm(float(degree), float(coefficient))

data_file = open("data2.txt", "r")
data_list = data_file.readlines()
data_file.close()
for line in data_list:
    degree, coefficient = line.strip().split()
    poly2._appendTerm(float(degree), float(coefficient))

print(poly1)
print(poly2)

print(poly1.degree())
print(poly2.degree())

print(poly2[2.0])

new_p = poly1 + poly2

print(new_p[3.0], new_p[2.0], new_p[1.0], new_p[0.0])
Exemple #35
0
import crt
from polynomial import Polynomial
from random import random

q = 987587
M, primes = crt.get_primes(8, q, 10)
P = Polynomial()
P.coef = [int(q * random()) for i in xrange(8)]

residues = crt.crt(P, primes)

assert crt.icrt(residues, M, primes) == P

residuesP2 = [x * x for x in residues]

assert crt.icrt(residuesP2) == (P * P % q)
Exemple #36
0
 def _calc_one(self):
     """Return field's one"""
     return self(Polynomial(self._gf, [self._gf.one()]))
Exemple #37
0
 def _calc_zero(self):
     """Return field's zero"""
     return self(Polynomial(self._gf, []))
Exemple #38
0
 def _rand(self, nonzero):
     """Return a random field element"""
     pol = Polynomial.rand(self._gf, self._ext - 1)
     while nonzero and pol.is_zero():
         pol = Polynomial.rand(self._gf, self._ext - 1)
     return self(pol)
Exemple #39
0
    def _berlekamp_massey(self, s):
        """Вычисляет и возвращает в полином описывающий положение ошибки (sigma)
        и в полином оценивающий ошибку (omega)
        Параметр s является синдромом многочлена (синдром кодируется в
        функциональном генераторе) который возвращает _синдромов. Не путать с 
        другим s = (n-k)/2

        Примечания:
        Полином описывающий ошибку:
        E(x) = E_0 + E_1 x + ... + E_(n-1) x^(n-1)

        j_1, j_2, ..., j_s позиция ошибки. (Есть в большинсвте s
        ошибках)

        Положение ошибки X_i определяется: X_i = α^(j_i)
        то есть, мощность α соответствующая положению ошибки

        Величина ошибки Y_i определяется: E_(j_i)
        то есть, коэффициент в полиноме описывающем ошибку j_i

        Полином описывающий положение ошибки:
        sigma(z) = Product( 1 - X_i * z, i=1..s )
        корни обратные местам ошибок
        ( 1/X_1, 1/X_2, ...)

         полином оценивающий ошибку omega(z) здесь не описывается
        """
        n = self.n
        k = self.k

        # Инициализация:
        sigma = [Polynomial((GF256int(1), ))]
        omega = [Polynomial((GF256int(1), ))]
        tao = [Polynomial((GF256int(1), ))]
        gamma = [Polynomial((GF256int(0), ))]
        D = [0]
        B = [0]

        # Константы:
        ONE = Polynomial(z0=GF256int(1))
        ZERO = Polynomial(z0=GF256int(0))
        Z = Polynomial(z1=GF256int(1))

        # Итеративно вычисляем полиномы до 2s раз.
        # Последний из них будет правильными.
        for l in xrange(0, n - k):
            # Цель для каждой итерации: вычисляем sigma[l+1] и omega[l+1] что
            # (1 + s)*sigma[l] == omega[l] в mod z^(l+1)

            # Для этой конкретной итерации, мы имеем sigma[l] и omega[l],
            # и вычисления sigma[l+1] и omega[l+1]

            # Первым находим Delta, с ненулевыми коэффицентами z^(l+1) в
            # (1 + s) * sigma[l]
            # Эта Delta действительна для l (в этой итерации) только
            Delta = ((ONE + s) * sigma[l]).get_coefficient(l + 1)
            # Делаем этот полином в степени 0
            Delta = Polynomial(x0=Delta)

            # Теперь можем вычислить sigma[l+1] и omega[l+1] для
            # sigma[l], omega[l], tao[l], gamma[l], и Delta
            sigma.append(sigma[l] - Delta * Z * tao[l])
            omega.append(omega[l] - Delta * Z * gamma[l])

            # Далее вычисляем tao и gamma
            # Есть два способа сделать это
            if Delta == ZERO or 2 * D[l] > (l + 1):
                # Сбособ 1
                D.append(D[l])
                B.append(B[l])
                tao.append(Z * tao[l])
                gamma.append(Z * gamma[l])

            elif Delta != ZERO and 2 * D[l] < (l + 1):
                # Способ 2
                D.append(l + 1 - D[l])
                B.append(1 - B[l])
                tao.append(sigma[l] // Delta)
                gamma.append(omega[l] // Delta)
            elif 2 * D[l] == (l + 1):
                if B[l] == 0:
                    # Способ 1 (как указанно выше)
                    D.append(D[l])
                    B.append(B[l])
                    tao.append(Z * tao[l])
                    gamma.append(Z * gamma[l])

                else:
                    # Способ 2 (как указанно выше)
                    D.append(l + 1 - D[l])
                    B.append(1 - B[l])
                    tao.append(sigma[l] // Delta)
                    gamma.append(omega[l] // Delta)
            else:
                raise Exception("Код не должен быть получен здесь")

        return sigma[-1], omega[-1]
Exemple #40
0
def test_polynomial_evaluate_at():
    f = Polynomial([1, 2, 3])
    assert_that((f(2))).is_equal_to(1 + 4 + 12)
Exemple #41
0
    def decode(self, r, nostrip=False):
        """Принимаем полученную строку или массив байт r и пытаемся расшифровать.
        Если это действующее кодовое слово, или если не содержит более (n-k)/2 
        ошибок, сообщение возвращается.

        Сообщение всегда имеет k байт, если сообщение меньше то оно дополняется
        нулевыми байтами. При декодировании отделим эти ведущие нулевые байты
        но это может вывать проблемы при декодировании двоичных данных. Когда
        nostrip истина, сообщение всегда возвращает k байт. Это полезно
        и позволяет убедиться, что нету потерянных данных при декодировании.
        """
        n = self.n
        k = self.k

        if self.verify(r):
            # Последние n-k байты четности
            if nostrip:
                return r[:-(n - k)]
            else:
                return r[:-(n - k)].lstrip("\0")

        #### Возвращаем r в полином
        r = Polynomial(GF256int(ord(x)) for x in r)

        # Вычисляем синдромы:
        sz = self._syndromes(r)

        # Найдем полином описывающий положение ошибки и полином оценивающий
        # ошибку используя алгоритм Берлекампа-Месси
        sigma, omega = self._berlekamp_massey(sz)

        # Now use Chien's procedure для нахождения позиции ошибки
        # j это массив целых чисел, представляющий позиции ошибок, 0
        # означает самый правый байт
        # X соответствует значению массива GF(2^8) значений,
        # где X_i = alpha^(j_i)
        X, j = self._chien_search(sigma)

        # Найдем велинины ошибок с помощью метода Форни
        # Y в массиве GF(2^8) это значение, соответствующей величины ошибки
        # с позицией заданной массивом j
        Y = self._forney(omega, X)

        # Поставим ошибку и ее положение вместе, в полином ошибок
        Elist = []
        for i in xrange(255):
            if i in j:
                Elist.append(Y[j.index(i)])
            else:
                Elist.append(GF256int(0))
        E = Polynomial(reversed(Elist))

        # Получаем наше кодовое слово
        c = r - E

        # Формируем его обратно в строку и возвращаем все последние n-k байт
        ret = "".join(chr(x) for x in c.coefficients[:-(n - k)])

        if nostrip:
            # Полиномиальные объекты не хранят ведущие нулевые коэффициенты,
            # поэтому мы на самом деле должны дополнить это до k байт
            return ret.rjust(k, "\0")
        else:
            return ret
Exemple #42
0
def test_polynomial_multiply():
    f = Polynomial([1, 2, 3])
    g = Polynomial([4, 5, 6])
    assert_that((f * g).coefficients).is_equal_to([4, 13, 28, 27, 18])
    def test_create_polynomial_with_empty_monomials(self):
        polynomial = Polynomial('5x+0x+9+0x')

        expected_monomials = [Monomial(5, 1), Monomial(9, 0)]

        self.assertEqual(polynomial.get_polynomial(), expected_monomials)
    def test_create_polynomial(self):
        polynomial = Polynomial('5x^2-x-7')

        expected_monomials = [Monomial(5, 2), Monomial(-1, 1), Monomial(-7, 0)]

        self.assertEqual(polynomial.get_polynomial(), expected_monomials)
    def test_create_empty_polynomial(self):
        polynomial = Polynomial('0x')

        expected_monomials = []

        self.assertEqual(polynomial.get_polynomial(), expected_monomials)
Exemple #46
0
def run_epipolar():
    # Construct symbolic problem
    num_landmarks = 10
    num_frames = 3

    true_landmarks = np.random.randn(num_landmarks, 3)
    true_positions = np.vstack((np.zeros(3),
                                np.random.rand(num_frames-1, 3)))
    true_cayleys = np.vstack((np.zeros(3),
                              np.random.rand(num_frames-1, 3)))

    true_qs = map(cayley_mat, true_cayleys)
    true_rotations = map(cayley, true_cayleys)

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R,p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]

    p0 = true_positions[0]
    q0 = true_qs[0]
    for i in range(1, num_frames):
        p = true_positions[i]
        q = true_qs[i]
        E = essential_matrix(q0, p0, q, p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            print np.dot(z, np.dot(E, z0))

    # construct symbolic versions of the above
    s_offs = 0
    p_offs = s_offs + (num_frames-1)*3
    num_vars = p_offs + (num_frames-1)*3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_cayleys = np.reshape(sym_vars[s_offs:s_offs+(num_frames-1)*3], (num_frames-1, 3))
    sym_positions = np.reshape(sym_vars[p_offs:p_offs+(num_frames-1)*3], (num_frames-1, 3))

    true_vars = np.hstack((true_cayleys[1:].flatten(),
                           true_positions[1:].flatten()))

    residuals = []
    p0 = np.zeros(3)
    R0 = np.eye(3)
    for i in range(1, num_frames):
        sym_p = sym_positions[i-1]
        sym_s = sym_cayleys[i-1]
        sym_q = cayley_mat(sym_s)
        sym_E = essential_matrix(R0, p0, sym_q, sym_p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            residual = np.dot(z, np.dot(sym_E, z0))
            print 'Residual poly: ',len(residual), residual.total_degree
            residuals.append(residual)

    print 'Num sym_vars:',num_vars
    print 'Num residuals:',len(residuals)

    print 'Residuals:', len(residuals)
    cost = Polynomial(num_vars)
    for residual in residuals:
        #cost += np.dot(residual, residual)
        print '  ',residual(*true_vars)  #ri.num_vars, len(true_vars)

    print '\nGradients:'
    gradient = [cost.partial_derivative(i) for i in range(num_vars)]
    for gi in gradient:
        print '  ',gi(*true_vars)

    J = np.array([[r.partial_derivative(i)(*true_vars) for i in range(num_vars)]
                  for r in residuals])

    print '\nJacobian singular values:'
    print J.shape
    U,S,V = np.linalg.svd(J)
    print S
    print V[-1]
    print V[-2]

    print '\nHessian eigenvalues:'
    H = np.dot(J.T, J)
    print H.shape
    print np.linalg.eigvals(H)
Exemple #47
0
def run_spline_epipolar():
    # Construct symbolic problem
    num_landmarks = 10
    num_frames = 3
    num_imu_readings = 8
    bezier_degree = 4
    out = 'out/epipolar_accel_bezier3'

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    imu_times = np.linspace(0, 1, num_imu_readings)

    true_rot_controls = np.random.rand(bezier_degree-1, 3)
    true_pos_controls = np.random.rand(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)
    true_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in frame_times])
    true_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])

    true_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])

    true_qs = map(cayley_mat, true_cayleys)
    true_rotations = map(cayley, true_cayleys)

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R,p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]

    p0 = true_positions[0]
    q0 = true_qs[0]
    for i in range(1, num_frames):
        p = true_positions[i]
        q = true_qs[i]
        E = essential_matrix(q0, p0, q, p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            #print np.dot(z, np.dot(E, z0))

    # construct symbolic versions of the above
    s_offs = 0
    p_offs = s_offs + (bezier_degree-1)*3
    num_vars = p_offs + (bezier_degree-1)*3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_rot_controls = np.reshape(sym_vars[s_offs:s_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    sym_pos_controls = np.reshape(sym_vars[p_offs:p_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))

    true_vars = np.hstack((true_rot_controls.flatten(),
                           true_pos_controls.flatten()))

    residuals = []

    # Accel residuals
    for i in range(num_imu_readings):
        sym_a = zero_offset_bezier_second_deriv(sym_pos_controls, imu_times[i])
        residual = sym_a - true_accels[i]
        residuals.extend(residual)

    # Epipolar residuals
    p0 = np.zeros(3)
    R0 = np.eye(3)
    for i in range(1, num_frames):
        sym_s = zero_offset_bezier(sym_rot_controls, frame_times[i])
        sym_p = zero_offset_bezier(sym_pos_controls, frame_times[i])
        sym_q = cayley_mat(sym_s)
        #sym_q = np.eye(3) * (1. - np.dot(sym_s, sym_s)) + 2.*skew(sym_s) + 2.*np.outer(sym_s, sym_s)
        sym_E = essential_matrix(R0, p0, sym_q, sym_p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            residual = np.dot(z, np.dot(sym_E, z0))
            residuals.append(residual)

    print 'Num vars:',num_vars
    print 'Num residuals:',len(residuals)

    print 'Residuals:', len(residuals)
    cost = Polynomial(num_vars)
    for r in residuals:
        cost += r*r
        print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    print '\nCost:'
    print '  Num terms: %d' % len(cost)
    print '  Degree: %d' % cost.total_degree

    print '\nGradients:'
    gradients = cost.partial_derivatives()
    for gradient in gradients:
        print '  %d  (degree=%d, length=%d)' % (gradient(*true_vars), gradient.total_degree, len(gradient))

    jacobians = [r.partial_derivatives() for r in residuals]

    J = np.array([[J_ij(*true_vars) for J_ij in row] for row in jacobians])

    U, S, V = np.linalg.svd(J)

    print '\nJacobian singular values:'
    print J.shape
    print S
    null_space_dims = sum(np.abs(S) < 1e-5)
    if null_space_dims > 0:
        print '\nNull space:'
        for i in null_space_dims:
            print V[-i]
            print V[-2]

    print '\nHessian eigenvalues:'
    H = np.dot(J.T, J)
    print H.shape
    print np.linalg.eigvals(H)

    # Output to file
    write_polynomials(cost, out+'/cost.txt')
    write_polynomials(residuals, out+'/residuals.txt')
    write_polynomials(gradients, out+'/gradients.txt')
    write_polynomials(jacobians, out+'/jacobians.txt')
    write_solution(true_vars, out+'/solution.txt')
Exemple #48
0
def test_polynomial_sub():
    f = Polynomial([1, 2, 3])
    g = Polynomial([4, 5, 6])
    assert_that((f - g).coefficients).is_equal_to([-3, -3, -3])
Exemple #49
0
 def test_init_by_tuple(self):
     self.assertEqual([1, 2, -4], Polynomial((1, 2, -4)).coeffs)
    def test_when_polynomial_is_linear_function(self):
        polynomial = Polynomial('-5x-9')

        expected_derivative = '-5'

        self.assertEqual(polynomial.find_derivative(), expected_derivative)
Exemple #51
0
def test_polynomial_add_zero():
    f = Polynomial([1, 2, 3])
    g = Polynomial([0])
    assert_that((f + g).coefficients).is_equal_to([1, 2, 3])
Exemple #52
0
 def test_mul_with_polynomial2(self):
     self.assertEqual(Polynomial([1, 4, 0, -8]),
                      Polynomial([1, 2, -4]) * Polynomial([1, 2]))
Exemple #53
0
def run_sfm():
    # Construct symbolic problem
    num_landmarks = 4
    num_frames = 2

    print 'Num observations: ', num_landmarks * num_frames * 2
    print 'Num vars: ', num_frames*6 + num_landmarks*3 + num_frames*num_landmarks

    true_landmarks = np.random.randn(num_landmarks, 3)
    true_positions = np.random.rand(num_frames, 3)
    true_cayleys = np.random.rand(num_frames, 3)

    true_qs = map(cayley_mat, true_cayleys)
    true_betas = map(cayley_denom, true_cayleys)
    true_rotations = [(q/b) for (q,b) in zip(true_qs, true_betas)]

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R,p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]
    true_alphas = [[np.linalg.norm(zu) for zu in row] for row in true_uprojections]

    true_vars = np.hstack((true_cayleys.flatten(),
                           true_positions.flatten(),
                           true_landmarks.flatten(),
                           np.asarray(true_alphas).flatten()))

    #true_projection_mat = np.reshape(true_projections, (num_frames, num_landmarks, 2))

    for i in range(num_frames):
        p = true_positions[i]
        q = true_qs[i]
        beta = true_betas[i]
        for j in range(num_landmarks):
            x = true_landmarks[j]
            z = true_projections[i][j]
            alpha = true_alphas[i][j]
            print alpha * beta * z - np.dot(q, x-p)

    # construct symbolic versions of the above
    s_offs = 0
    p_offs = s_offs + num_frames*3
    x_offs = p_offs + num_frames*3
    a_offs = x_offs + num_landmarks*3
    num_vars = a_offs + num_landmarks*num_frames

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_cayleys = np.reshape(sym_vars[s_offs:s_offs+num_frames*3], (num_frames, 3))
    sym_positions = np.reshape(sym_vars[p_offs:p_offs+num_frames*3], (num_frames, 3))
    sym_landmarks = np.reshape(sym_vars[x_offs:x_offs+num_landmarks*3], (num_landmarks, 3))
    sym_alphas = np.reshape(sym_vars[a_offs:], (num_frames, num_landmarks))

    residuals = []
    for i in range(num_frames):
        sym_p = sym_positions[i]
        sym_s = sym_cayleys[i]
        for j in range(num_landmarks):
            sym_x = sym_landmarks[j]
            sym_a = sym_alphas[i,j]
            true_z = true_projections[i][j]
            residual = np.dot(cayley_mat(sym_s), sym_x-sym_p) - sym_a * cayley_denom(sym_s) * true_z
            residuals.extend(residual)

    print 'Residuals:'
    cost = Polynomial(num_vars)
    for residual in residuals:
        cost += np.dot(residual, residual)
        print '  ',residual(*true_vars)  #ri.num_vars, len(true_vars)

    print '\nGradients:'
    gradient = [cost.partial_derivative(i) for i in range(num_vars)]
    for gi in gradient:
        print gi(*true_vars)

    j = np.array([[r.partial_derivative(i)(*true_vars) for i in range(num_vars)]
                  for r in residuals])

    print '\nJacobian singular values:'
    print j.shape
    u, s, v = np.linalg.svd(j)
    print s

    print '\nHessian eigenvalues:'
    h = np.dot(j.T, j)
    print h.shape
    print np.linalg.eigvals(h)
Exemple #54
0
 def test_mul_with_zero(self):
     self.assertEqual(Polynomial([0]), Polynomial([1, 2, -4]) * 0)
Exemple #55
0
def run_position_only_spline_epipolar():
    #
    # Construct ground truth
    #
    num_landmarks = 50
    num_frames = 4
    num_imu_readings = 80
    bezier_degree = 4
    out = 'out/position_only_bezier3'

    print 'Num landmarks:', num_landmarks
    print 'Num frames:', num_frames
    print 'Num IMU readings:', num_imu_readings
    print 'Bezier curve degree:', bezier_degree

    if not os.path.isdir(out):
        os.mkdir(out)

    # Both splines should start at 0,0,0
    frame_times = np.linspace(0, .9, num_frames)
    imu_times = np.linspace(0, 1, num_imu_readings)

    true_rot_controls = np.random.rand(bezier_degree-1, 3)
    true_pos_controls = np.random.rand(bezier_degree-1, 3)

    true_landmarks = np.random.randn(num_landmarks, 3)

    true_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])
    true_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in frame_times])
    true_rotations = map(cayley, true_cayleys)

    true_imu_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in imu_times])
    true_imu_rotations = map(cayley, true_imu_cayleys)

    true_gravity = normalized(np.random.rand(3)) * 9.8
    true_accel_bias = np.random.rand(3)
    true_global_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])
    true_accels = [np.dot(R, a + true_gravity) + true_accel_bias
                   for R, a in zip(true_imu_rotations, true_global_accels)]

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R, p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]

    #
    # Construct symbolic versions of the above
    #
    position_offs = 0
    accel_bias_offset = position_offs + (bezier_degree-1)*3
    gravity_offset = accel_bias_offset + 3
    num_vars = gravity_offset + 3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_pos_controls = np.reshape(sym_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
    sym_accel_bias = np.asarray(sym_vars[accel_bias_offset:accel_bias_offset+3])
    sym_gravity = np.asarray(sym_vars[gravity_offset:gravity_offset+3])

    true_vars = np.hstack((true_pos_controls.flatten(), true_accel_bias, true_gravity))
    assert len(true_vars) == len(sym_vars)

    residuals = []

    #
    # Accel residuals
    #
    print '\nAccel residuals:'
    for i in range(num_imu_readings):
        true_R = true_imu_rotations[i]
        sym_global_accel = zero_offset_bezier_second_deriv(sym_pos_controls, imu_times[i])
        sym_accel = np.dot(true_R, sym_global_accel + sym_gravity) + sym_accel_bias
        residual = sym_accel - true_accels[i]
        for i in range(3):
            print '  Degree of global accel = %d, local accel = %d, residual = %d' % \
                  (sym_global_accel[i].total_degree, sym_accel[i].total_degree, residual[i].total_degree)
        residuals.extend(residual)

    #
    # Epipolar residuals
    #
    p0 = np.zeros(3)
    R0 = np.eye(3)
    for i in range(1, num_frames):
        true_s = true_cayleys[i]
        true_R = cayley_mat(true_s)
        sym_p = zero_offset_bezier(sym_pos_controls, frame_times[i])
        sym_E = essential_matrix(R0, p0, true_R, sym_p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            residual = np.dot(z, np.dot(sym_E, z0))
            residuals.append(residual)

    print '\nNum vars:', num_vars
    print 'Num residuals:', len(residuals)

    print '\nResiduals:', len(residuals)
    cost = Polynomial(num_vars)
    for r in residuals:
        cost += r*r
        print '  %f   (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))

    print '\nCost:'
    print '  Num terms: %d' % len(cost)
    print '  Degree: %d' % cost.total_degree
    for term in cost:
        print '    ',term

    print '\nGradients:'
    gradients = cost.partial_derivatives()
    for gradient in gradients:
        print '  %d  (degree=%d, length=%d)' % (gradient(*true_vars), gradient.total_degree, len(gradient))

    jacobians = np.array([r.partial_derivatives() for r in residuals])

    J = evaluate_array(jacobians, *true_vars)

    U, S, V = np.linalg.svd(J)

    print '\nJacobian singular values:'
    print J.shape
    print S

    print '\nHessian eigenvalues:'
    H = np.dot(J.T, J)
    print H.shape
    print np.linalg.eigvals(H)

    null_space_dims = sum(np.abs(S) < 1e-5)
    print '\nNull space dimensions:', null_space_dims
    if null_space_dims > 0:
        for i in range(null_space_dims):
            print '  ',V[-i]

    null_monomial = (0,) * num_vars
    coordinate_monomials = [list(var.monomials)[0] for var in sym_vars]
    A, _ = matrix_form(gradients, coordinate_monomials)
    b, _ = matrix_form(gradients, [null_monomial])
    b = np.squeeze(b)

    AA, bb, kk = quadratic_form(cost)

    estimated_vars = np.squeeze(numpy.linalg.solve(AA*2, -b))

    print '\nEstimated:'
    print estimated_vars

    print '\nGround truth:'
    print true_vars

    print '\nError:'
    print np.linalg.norm(estimated_vars - true_vars)

    # Output to file
    write_polynomials(cost, out+'/cost.txt')
    write_polynomials(residuals, out+'/residuals.txt')
    write_polynomials(gradients, out+'/gradients.txt')
    write_polynomials(jacobians.flat, out+'/jacobians.txt')
    write_solution(true_vars, out+'/solution.txt')
Exemple #56
0
 def test_mul_fail_incorrect_type(self):
     with self.assertRaises(TypeError):
         Polynomial([1, 2, -4]) * 'test'
Exemple #57
0
 def test_expression(self):
     self.assertEqual(
         Polynomial([-1, 7, 4, -14]),
         -(Polynomial([1, -4]) * Polynomial([1, -2, -4])) +
         Polynomial([1, 8, 2]))
Exemple #58
0
 def test_eq_polynomials(self):
     self.assertTrue(Polynomial([1, 4, 0, -8]) == Polynomial([1, 4, 0, -8]))
Exemple #59
0
 def __call__(self, x):
     """Return an element with the value x"""
     if isinstance(x, (list, tuple)):
         x = Polynomial(self._gf, x)
     return FF.__call__(self, x)
Exemple #60
0
    def test_scale(self):
        p = Polynomial('3 1 2 1 1 1')
        self.assertEqual(p.scale(0.0), Polynomial('0 0'))

        p = Polynomial('3 1 2 1 1 1')
        self.assertEqual(p.scale(2.5), Polynomial('3 2.5 2 2.5 1 2.5'))