Exemple #1
0
def test_polynomial_model():
    #Lars excluded as it performs poorly.
    polynomial_report = polyr(diabetes_data,
                              diabetes_target,
                              n_folds=2,
                              num_degrees=3,
                              verbose=1,
                              concurrency=1,
                              feature_selection=False,
                              save=False,
                              project_name='polynomial_test')
    assert ((polynomial_report.scores.mean()[:, 'test']).median() > 0.3), \
        'test score below chance'
Exemple #2
0
def test_run_regression():
    global report
    report = polyr(diabetes_data,
                   diabetes_target,
                   n_folds=2,
                   verbose=1,
                   concurrency=1,
                   feature_selection=False,
                   scoring='r2',
                   save=False,
                   project_name='test_regression')
    assert ((report.scores.mean()[:, 'test']).median() > 0.2),\
        'test score below chance'
    assert ((report.scores.mean()[:, 'train']).median() > 0.2),\
        'train score below chance'
Exemple #3
0
def test_feature_selection_regression():
    global report_with_features
    report_with_features = polyr(diabetes_data,
                                 diabetes_target,
                                 n_folds=2,
                                 verbose=1,
                                 concurrency=1,
                                 feature_selection=True,
                                 scoring='r2',
                                 save=False,
                                 project_name='test_feature_selection')
    assert ((report_with_features.scores.mean()[:, 'test']).median() > 0.2),\
        'test score below chance'
    assert ((report_with_features.scores.mean()[:, 'train']).median() > 0.2),\
        'train score below chance'

    for key, ypred in report_with_features.predictions.iteritems():
        mse = np.linalg.norm(ypred - diabetes_target) / len(diabetes_target)
        assert mse < 5, '{} Prediction error is too high'.format(key)