def test_distributions_uniform_kernel_random_sample():
	d = BernoulliDistribution(0.2)

	x = numpy.array([0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
			0, 0, 0, 0, 0])

	assert_array_equal(d.sample(20, random_state=5), x)
	assert_raises(AssertionError, assert_array_equal, d.sample(20), x)
def test_distributions_uniform_kernel_random_sample():
	d = BernoulliDistribution(0.2)

	x = numpy.array([0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
			0, 0, 0, 0, 0])

	assert_array_equal(d.sample(20, random_state=5), x)
	assert_raises(AssertionError, assert_array_equal, d.sample(20), x)
def test_bernoulli():
    d = BernoulliDistribution(0.6)
    assert_equal(d.probability(0), 0.4)
    assert_equal(d.probability(1), 0.6)
    assert_equal(d.parameters[0], 1 - d.probability(0))
    assert_equal(d.parameters[0], d.probability(1))

    d.fit([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
    assert_not_equal(d.probability(1), 1.0)
    assert_equal(d.probability(0), 1.0)

    a = [0.0, 0.0, 0.0]
    b = [1.0, 1.0, 1.0]
    c = [1.0, 1.0, 1.0]
    d.summarize(a)
    d.from_summaries()
    assert_equal(d.probability(0), 1)
    assert_equal(d.probability(1), 0)

    d.summarize(a)
    d.summarize(b)
    d.from_summaries()
    assert_equal(d.probability(0), 0.5)
    assert_equal(d.probability(1), 0.5)
    assert_equal(d.parameters[0], d.probability(0))
    assert_equal(d.parameters[0], d.probability(1))

    d.summarize(a)
    d.summarize(b)
    d.summarize(c)
    d.from_summaries()
    assert_equal(round(d.probability(0), 4), 0.3333)
    assert_equal(round(d.probability(1), 4), 0.6667)
    assert_equal(d.parameters[0], d.probability(1))

    d = BernoulliDistribution.from_samples([0.0, 0.0, 0.0, 0.0, 0.0, 1.0])
    assert_equal(round(d.probability(0), 4), 0.8333)
    assert_equal(round(d.probability(1), 4), 0.1667)
    assert_almost_equal(d.parameters[0], d.probability(1))

    e = Distribution.from_json(d.to_json())
    assert_equal(e.name, "BernoulliDistribution")
    assert_equal(round(e.parameters[0], 4), 0.1667)

    f = pickle.loads(pickle.dumps(e))
    assert_equal(f.name, "BernoulliDistribution")
    assert_equal(round(f.parameters[0], 4), 0.1667)
def test_bernoulli():
	d = BernoulliDistribution(0.6)
	assert_equal(d.probability(0), 0.4)
	assert_equal(d.probability(1), 0.6)
	assert_equal(d.parameters[0], 1-d.probability(0))
	assert_equal(d.parameters[0], d.probability(1))

	d.fit([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
	assert_not_equal(d.probability(1), 1.0)
	assert_equal(d.probability(0), 1.0)

	a = [0.0, 0.0, 0.0]
	b = [1.0, 1.0, 1.0]
	c = [1.0, 1.0, 1.0]
	d.summarize(a)
	d.from_summaries()
	assert_equal(d.probability(0), 1)
	assert_equal(d.probability(1), 0)

	d.summarize(a)
	d.summarize(b)
	d.from_summaries()
	assert_equal(d.probability(0), 0.5)
	assert_equal(d.probability(1), 0.5)
	assert_equal(d.parameters[0], d.probability(0))
	assert_equal(d.parameters[0], d.probability(1))

	d.summarize(a)
	d.summarize(b)
	d.summarize(c)
	d.from_summaries()
	assert_equal(round(d.probability(0), 4), 0.3333)
	assert_equal(round(d.probability(1), 4), 0.6667)
	assert_equal(d.parameters[0], d.probability(1))

	d = BernoulliDistribution.from_samples([0.0, 0.0, 0.0, 0.0, 0.0, 1.0])
	assert_equal(round(d.probability(0), 4), 0.8333)
	assert_equal(round(d.probability(1), 4), 0.1667)
	assert_almost_equal(d.parameters[0], d.probability(1))

	e = Distribution.from_json(d.to_json())
	assert_equal(e.name, "BernoulliDistribution")
	assert_equal(round(e.parameters[0], 4), 0.1667)

	f = pickle.loads(pickle.dumps(e))
	assert_equal(f.name, "BernoulliDistribution")
	assert_equal(round(f.parameters[0], 4), 0.1667)
Exemple #5
0
from pomegranate import (
    NaiveBayes,
    NormalDistribution,
    UniformDistribution,
    ExponentialDistribution,
    GeneralMixtureModel,
    MultivariateGaussianDistribution,
    BernoulliDistribution,
)
import pandas as pd
import numpy as np

X = pd.DataFrame({"A": [1, 0, 1, 0, 1], "B": [1, 1, 1, 1, 0]})

x = BernoulliDistribution(0.4)

vals = []
[vals.append(x.sample()) for i in range(1000)]

model = NaiveBayes([
    NormalDistribution(5, 2),
    UniformDistribution(0, 10),
    ExponentialDistribution(1.0)
])
model.predict(np.array([[10]]))

model = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution,
                                         n_components=3,
                                         X=X)