Exemple #1
0
def fit_voxel(tup):
    (ii, vx, js) = tup
    stdat = js['Stimulus']
    if pimms.is_list(stdat): stdat = stdat[0]
    height = stdat['fieldofviewVert']
    width = stdat['fieldofviewHorz']
    ### STIMULUS
    # First get a viewing distance and screen size
    dist = 100 # 100 cm is arbitrary
    stim_width = 2 * dist * np.tan(np.pi/180 * width/2)
    stimulus = VisualStimulus(stim, dist, stim_width, 1.0, float(js['TR']), ctypes.c_int16)
    if fixed_hrf is not False:
        model = og_nohrf.GaussianModel(stimulus, utils.double_gamma_hrf)
        model.hrf_delay = fixed_hrf
    else: model = og.GaussianModel(stimulus, utils.double_gamma_hrf)
    ### FIT
    ## define search grids
    # these define min and max of the edge of the initial brute-force search.
    x_grid = (-width/2,width/2)
    y_grid = (-height/2,height/2)
    s_grid = (1/stimulus.ppd + 0.25, 5.25)
    h_grid = (-1.0, 1.0)
    ## define search bounds
    # these define the boundaries of the final gradient-descent search.
    x_bound = (-width, width)
    y_bound = (-height, height)
    s_bound = (1/stimulus.ppd, 12.0) # smallest sigma is a pixel
    b_bound = (1e-8,None)
    u_bound = (None,None)
    h_bound = (-3.0,3.0)
    ## package the grids and bounds
    if fixed_hrf is not False:
        grids = (x_grid, y_grid, s_grid)
        bounds = (x_bound, y_bound, s_bound, b_bound, u_bound,)
    else:
        grids = (x_grid, y_grid, s_grid, h_grid)
        bounds = (x_bound, y_bound, s_bound, h_bound, b_bound, u_bound,)
    ## fit the response
    # auto_fit = True fits the model on assignment
    # verbose = 0 is silent
    # verbose = 1 is a single print
    # verbose = 2 is very verbose
    if fixed_hrf is not False:
        fit = og_nohrf.GaussianFit(model, vx, grids, bounds, Ns=Ns,
                                   voxel_index=(ii, 1, 1), auto_fit=True, verbose=2)
    else:
        fit = og.GaussianFit(model, vx, grids, bounds, Ns=Ns,
                             voxel_index=(ii, 1, 1), auto_fit=True, verbose=2)
    return (ii, vx) + tuple(fit.overloaded_estimate) + (fit.prediction,)
Exemple #2
0
def test_og_fit():

    # stimulus features
    viewing_distance = 38
    screen_width = 25
    thetas = np.arange(0, 360, 90)
    thetas = np.insert(thetas, 0, -1)
    thetas = np.append(thetas, -1)
    num_blank_steps = 30
    num_bar_steps = 30
    ecc = 12
    tr_length = 1.0
    frames_per_tr = 1.0
    scale_factor = 1.0
    pixels_across = 100
    pixels_down = 100
    dtype = ctypes.c_int16

    # create the sweeping bar stimulus in memory
    bar = simulate_bar_stimulus(pixels_across, pixels_down, viewing_distance,
                                screen_width, thetas, num_bar_steps,
                                num_blank_steps, ecc)

    # create an instance of the Stimulus class
    stimulus = VisualStimulus(bar, viewing_distance, screen_width,
                              scale_factor, tr_length, dtype)

    # initialize the gaussian model
    model = og.GaussianModel(stimulus, utils.spm_hrf)
    model.hrf_delay = 0
    model.mask_size = 5

    # generate a random pRF estimate
    x = -5.24
    y = 2.58
    sigma = 1.24
    hrf_delay = 0.66
    beta = 2.5
    baseline = -0.25

    # create the "data"
    data = model.generate_prediction(x, y, sigma, hrf_delay, beta, baseline)

    # set search grid
    x_grid = (-10, 10)
    y_grid = (-10, 10)
    s_grid = (0.25, 5.25)
    h_grid = (-1.0, 1.0)

    # set search bounds
    x_bound = (-12.0, 12.0)
    y_bound = (-12.0, 12.0)
    s_bound = (0.001, 12.0)
    h_bound = (-1.5, 1.5)
    b_bound = (1e-8, None)
    m_bound = (None, None)

    # loop over each voxel and set up a GaussianFit object
    grids = (
        x_grid,
        y_grid,
        s_grid,
        h_grid,
    )
    bounds = (x_bound, y_bound, s_bound, h_bound, b_bound, m_bound)

    # fit the response
    fit = og.GaussianFit(model, data, grids, bounds, Ns=5)

    # coarse fit
    npt.assert_almost_equal(fit.x0, -5.0)
    npt.assert_almost_equal(fit.y0, 5.0)
    npt.assert_almost_equal(fit.s0, 2.75)
    npt.assert_almost_equal(fit.hrf0, 0.5)
    # the baseline/beta should be 0/1 when regressed data vs. estimate
    (m, b) = np.polyfit(fit.scaled_ballpark_prediction, data, 1)
    npt.assert_almost_equal(m, 1.0)
    npt.assert_almost_equal(b, 0.0)

    # assert equivalence
    npt.assert_almost_equal(fit.x, x)
    npt.assert_almost_equal(fit.y, y)
    npt.assert_almost_equal(fit.hrf_delay, hrf_delay)
    npt.assert_almost_equal(fit.sigma, sigma)
    npt.assert_almost_equal(fit.beta, beta)

    # test receptive field
    rf = generate_og_receptive_field(x, y, sigma, fit.model.stimulus.deg_x,
                                     fit.model.stimulus.deg_y)
    rf /= (2 * np.pi * sigma**2) * 1 / np.diff(model.stimulus.deg_x[0, 0:2])**2
    npt.assert_almost_equal(np.round(rf.sum()),
                            np.round(fit.receptive_field.sum()))

    # test model == fit RF
    npt.assert_almost_equal(
        np.round(fit.model.generate_receptive_field(x, y, sigma).sum()),
        np.round(fit.receptive_field.sum()))
Exemple #3
0
        x_bound,
        y_bound,
        s_bound,
        h_bound,
        b_bound,
        u_bound,
    )
    ## fit the response
    # auto_fit = True fits the model on assignment
    # verbose = 0 is silent
    # verbose = 1 is a single print
    # verbose = 2 is very verbose
    fit = og.GaussianFit(model,
                         vx,
                         grids,
                         bounds,
                         Ns=Ns,
                         voxel_index=(ii, 1, 1),
                         auto_fit=True,
                         verbose=2)
    for (k, v) in zip(fields, fit.overloaded_estimate):
        res[k].append(v)
    res['pred'].append(fit.prediction)
# Update the results to match the x0/y0, sigma style used by prfanalyze
rr = {}
rr['x0'] = np.cos(res['theta']) * res['rho']
rr['y0'] = np.sin(res['theta']) * res['rho']
rr['sigmamajor'] = res['sigma']
rr['sigmaminor'] = res['sigma']
rr['beta'] = res['beta']
rr['baseline'] = res['baseline']
rr['hrfdelay'] = res['hrfdelay']
Exemple #4
0
# %% markdown
# #Fit the Models
# ## Gaussian Model
# %
import popeye.og_hrf as og_hrf
import popeye.og as og

hrf   = popeye.utilities.double_gamma_hrf
model = og_hrf.GaussianModel(stimulus, hrf)
# model.hrf_delay = -0.25
# RSQarray = []
# for ii in np.array([-0.5,-0.25, 1,0.25, 0.5]):
model.hrf_delay = -0.25
fit = og_hrf.GaussianFit(model, input_data,
                     ((-10, 10), (-10, 10), (0.25, 6.25), (-3.0, 3.0)),
                     ((-10, 10), (-10, 10), (0.10, 12.0), (-6.0, 6.0)),
                     auto_fit=True, Ns=5, verbose=1)
    # RSQarray.append((ii,fit.RSQ))


# %
# find and show the parameters (x, y, sigma, n, beta, baseline)
sol = fit.overloaded_estimate
prediction = fit.prediction
for (k,v) in zip(['theta', 'rho', 'sigma', 'hrf_delay', 'beta', 'baseline'], tuple(sol)):
    print('%-10s'%k,':\t',v)

# %
t = np.linspace(0, 300, 150)
(m,b) = (1,0)
(m,b) = sp.stats.linregress(prediction, input_data)[:2]
    y_bound,
    s_bound,
    h_bound,
    b_bound,
    u_bound,
)

## fit the response
# auto_fit = True fits the model on assignment
# verbose = 0 is silent
# verbose = 1 is a single print
# verbose = 2 is very verbose
fit = og.GaussianFit(model,
                     data,
                     grids,
                     bounds,
                     Ns=3,
                     voxel_index=(1, 2, 3),
                     auto_fit=True,
                     verbose=2)

## plot the results
import matplotlib.pyplot as plt
plt.plot(fit.prediction, c='r', lw=3, label='model', zorder=1)
plt.scatter(range(len(fit.data)),
            fit.data,
            s=30,
            c='k',
            label='data',
            zorder=2)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)