def test_bound_cell_node_keyword(self): # Compute update for a single cell on the boundary g, perm, bnd, flux, bound_flux = self.setup() inner_cell = 10 nodes_of_cell = np.array([12, 13, 18, 19]) faces_of_cell = np.array([12, 13, 40, 45]) partial_flux, partial_bound, _, _, active_faces = mpfa.mpfa_partial( g, perm, bnd, nodes=nodes_of_cell, inverter="python") self.assertTrue(faces_of_cell.size == active_faces.size) self.assertTrue( np.all(np.sort(faces_of_cell) == np.sort(active_faces))) diff_flux = (flux - partial_flux).todense() diff_bound = (bound_flux - partial_bound).todense() self.assertTrue(np.max(np.abs(diff_flux[faces_of_cell])) == 0) self.assertTrue(np.max(np.abs(diff_bound[faces_of_cell])) == 0) # Only the faces of the central cell should be zero partial_flux[faces_of_cell, :] = 0 partial_bound[faces_of_cell, :] = 0 self.assertTrue(np.max(np.abs(partial_flux.data)) == 0) self.assertTrue(np.max(np.abs(partial_bound.data)) == 0)
def test_inner_cell_node_keyword(self): # Compute update for a single cell in the interior. g, perm, bnd, flux, bound_flux = self.setup() inner_cell = 12 nodes_of_cell = np.array([14, 15, 20, 21]) faces_of_cell = np.array([14, 15, 42, 47]) partial_flux, partial_bound, active_faces \ = mpfa.mpfa_partial(g, perm, bnd, nodes=nodes_of_cell, inverter='python') assert faces_of_cell.size == active_faces.size assert np.all(np.sort(faces_of_cell) == np.sort(active_faces)) diff_flux = (flux - partial_flux).todense() diff_bound = (bound_flux - partial_bound).todense() assert np.max(np.abs(diff_flux[faces_of_cell])) == 0 assert np.max(np.abs(diff_bound[faces_of_cell])) == 0 # Only the faces of the central cell should be zero partial_flux[faces_of_cell, :] = 0 partial_bound[faces_of_cell, :] = 0 assert np.max(np.abs(partial_flux.data)) == 0 assert np.max(np.abs(partial_bound.data)) == 0
def test_one_cell_a_time_node_keyword(self): # Update one and one cell, and verify that the result is the same as # with a single computation. # The test is similar to what will happen with a memory-constrained # splitting. g = CartGrid([3, 3]) g.compute_geometry() # Assign random permeabilities, for good measure np.random.seed(42) kxx = np.random.random(g.num_cells) kyy = np.random.random(g.num_cells) # Ensure positive definiteness kxy = np.random.random(g.num_cells) * kxx * kyy perm = PermTensor(2, kxx=kxx, kyy=kyy, kxy=kxy) flux = sps.csr_matrix((g.num_faces, g.num_cells)) bound_flux = sps.csr_matrix((g.num_faces, g.num_faces)) faces_covered = np.zeros(g.num_faces, np.bool) bnd = bc.BoundaryCondition(g) cn = g.cell_nodes() for ci in range(g.num_cells): ind = np.zeros(g.num_cells) ind[ci] = 1 nodes = np.squeeze(np.where(cn * ind > 0)) partial_flux, partial_bound, _, _, active_faces = mpfa.mpfa_partial( g, perm, bnd, nodes=nodes, inverter="python") if np.any(faces_covered): partial_flux[faces_covered, :] *= 0 partial_bound[faces_covered, :] *= 0 faces_covered[active_faces] = True flux += partial_flux bound_flux += partial_bound flux_full, bound_flux_full, _, _ = mpfa.mpfa(g, perm, bnd, inverter="python") self.assertTrue((flux_full - flux).max() < 1e-8) self.assertTrue((flux_full - flux).min() > -1e-8) self.assertTrue((bound_flux - bound_flux_full).max() < 1e-8) self.assertTrue((bound_flux - bound_flux_full).min() > -1e-8)